Math, asked by karunya5652, 14 hours ago

simplify by rationalising the denominator root 7 upon 9 + 2 root 5​

Answers

Answered by poonamsachin1986
2

Answer

\frac{9\sqrt{7}-2\sqrt{35}  }{61 }

Step-by-step explanation:

Rationalize the denominator of \frac{ \sqrt{7} }{9+2\sqrt{5} } by multiplying numerator and denominator by 9-2\sqrt{5} .

  • \frac{\sqrt{7 }(9-2\sqrt{5})  }{(9+2\sqrt{5} )(9-2\sqrt{5}) }

Consider (9+2\sqrt{5})(9-2\sqrt{5}  ). Multiplication can be transformed into difference of squares using the rule: (a-b)(a+b)=a^{2} - b^{2}

  • \frac{\sqrt{7}(9-2\sqrt{5})  }{9^{2} - (2\sqrt{5})^{2}  }

Calculate 9 to the power of 2 and get 81.

  • \frac{\sqrt{7}(9-2\sqrt{5})  }{81- (2\sqrt{5})^{2}  }

Expand (2\sqrt{5})^{2}

  • \frac{\sqrt{7}(9-2\sqrt{5})  }{81- 2^{2} (\sqrt{5})^{2}  }

Calculate 2 to the power of 2 and get 4.

  • \frac{\sqrt{7}(9-2\sqrt{5})  }{81- 4 (\sqrt{5})^{2}  }

The square of \sqrt{5} is 5.

  • \frac{\sqrt{7}(9-2\sqrt{5})  }{81- 4 * 5  }

Multiply 4 and 5 to get 20.

  • \frac{\sqrt{7}(9-2\sqrt{5})  }{81- 20 }

Subtract 20 from 81 to get 61.

  • \frac{\sqrt{7}(9-2\sqrt{5})  }{61 }

Use the distributive property to multiply \sqrt{7} by 9-2\sqrt{5} .

  • \frac{9\sqrt{7}-2\sqrt{7} \sqrt{5}  }{61 }

To multiply \sqrt{7} and \sqrt{5},multiply the numbers under the square root.

  • \frac{9\sqrt{7}-2\sqrt{35}  }{61 }

Please mark me as brainliest answer .

Answered by garvjohri92
0

Step-by-step explanation:

hope it helps u

thanks

okkkk

Attachments:
Similar questions