Math, asked by baneetejas2089, 11 months ago

Simplify by rationalizing the denominator : 1/5+√2

Answers

Answered by yajat1810
16

hooe this answer helped you

Attachments:
Answered by DiyaTsl
1

Answer:  

  \frac{5-\sqrt{2} }{23} is the final answer.

Step-by-step explanation:

  • Rationalise    \frac{1}{5+\sqrt{2} }

Whenever there is root present in denominator, we try to remove root from denominator by rationalising it.

In this case, Multiply both numerator and denominator by 5-\sqrt{2}. This step is called rationalising the deominator.

                           \frac{1}{5+\sqrt{2} } = \frac{1 * (5-\sqrt{2}) }{(5+\sqrt{2})*(5-\sqrt{2)}  }

                            \frac{1}{5+\sqrt{2} } = \frac{(5-\sqrt{2}) }{5^{2}- (\sqrt{2} )^{2} }  }

                         \frac{(5-\sqrt{2}) }{5^{2}- (\sqrt{2} )^{2} }  } = \frac{(5-\sqrt{2}) }{25- 2 }  }

                           \frac{(5-\sqrt{2}) }{25- 2 }  } = \frac{(5-\sqrt{2}) }{23}  }

                           \frac{(5-\sqrt{2}) }{23}  } = \frac{5}{23}- \frac{\sqrt{2} }{23}

Therefore, the final answer after rationalisation is  \frac{5-\sqrt{2} }{23}.

#SPJ2

Similar questions