Math, asked by julkakanavp9dnl3, 1 year ago

simplify by rationalizing the denominator

Attachments:

Answers

Answered by DaIncredible
16
Heya there !!!
Here is the answer you were looking for:

Identity used :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}
 \frac{ \sqrt{6} }{ \sqrt{2} +  \sqrt{3}  }  +  \frac{3 \sqrt{2} }{ \sqrt{6} -  \sqrt{3}  }  +  \frac{4 \sqrt{3} }{ \sqrt{6} +  \sqrt{2}  }  \\  \\  =  \frac{ \sqrt{6} }{ \sqrt{2}  +  \sqrt{3} }  \times  \frac{ \sqrt{2}  -  \sqrt{3} }{ \sqrt{2} -  \sqrt{3}  }  +  \frac{3 \sqrt{2} }{ \sqrt{6}  -  \sqrt{3} }  \times  \frac{ \sqrt{6}   +  \sqrt{3} }{ \sqrt{6}  +   \sqrt{3}  }  +  \frac{4 \sqrt{3} }{ \sqrt{6} +  \sqrt{2}  }  \times  \frac{ \sqrt{6}  -  \sqrt{2} }{ \sqrt{6}  -  \sqrt{2} }  \\  \\  =  \frac{ \sqrt{6}( \sqrt{2}   -  \sqrt{3} )}{ {( \sqrt{2}) }^{2} -  {( \sqrt{3}) }^{2}  }  +  \frac{3 \sqrt{2}( \sqrt{6}   +   \sqrt{3} ) }{ {( \sqrt{6}) }^{2} -  { \sqrt{3}) }^{2}  }  +  \frac{4 \sqrt{3}( \sqrt{6} -  \sqrt{2}  ) }{ {( \sqrt{6}) }^{2}  -  {( \sqrt{2}) }^{2} }  \\  \\  =  \frac{ \sqrt{12} -  \sqrt{18}  }{2 - 3}  +  \frac{3 \sqrt{12}  +  3 \sqrt{6}  }{6 - 3}  +  \frac{4 \sqrt{18}  - 4 \sqrt{6} }{6 - 2}  \\  \\  =  - ( \sqrt{2 \times 2 \times 3}  -  \sqrt{3 \times 3 \times 2} ) +  \frac{3 \sqrt{2 \times 2  \times 3 }  +  3 \sqrt{6}  }{3}  +  \frac{4 \sqrt{3 \times 3 \times 2} - 4 \sqrt{6}  }{4}  \\  \\  =  -  \sqrt{ {2}^{2} \times 3 }   +   \sqrt{ {3}^{2}  \times 2}  +   \sqrt{ {2}^{2} \times 3 }   +   \sqrt{6}  + \sqrt{ {3}^{2}  \times 2}  -  \sqrt{6}  \\  \\  =  - 2 \sqrt{3}  + 3 \sqrt{2}  + 2 \sqrt{3}   +   \sqrt{6}  + 3 \sqrt{2}  -  \sqrt{6}  \\  \\  = 0

Hope this helps!!!

If you have any doubt regarding to my answer, please ask in the comment section or inbox me ^_^

@Mahak24

Thanks....
☺☺
Answered by Anonymous
6
Heya!!!!

Here's your answer =>=>

Refer to the attached file ^^^^

Plz ask me if you feel any problem.

Hope it will help you ☆▪☆

Thanks ^_^
Attachments:
Similar questions