Math, asked by cuteness88, 10 months ago

Simplify by rationalizing the denominator: (7 + 3√5)/(3+ √5) - (7 - 3√5)/(3 - √5) ​

Answers

Answered by anchal1234536
1

Answer:

please consider this answer

Attachments:
Answered by nishitakishore
0

Answer:

\frac{(7 + 3\sqrt{5}) }{(3+ \sqrt{5}) } - \frac{(7 - 3\sqrt{5}) }{(3- \sqrt{5}) }\\\\

I. \frac{(7 + 3\sqrt{5}) }{(3+ \sqrt{5}) }

Rationalizing factor = 3 -\sqrt{5}

\frac{(7 + 3\sqrt{5}) }{(3+ \sqrt{5}) }  X  \frac{(3 -\sqrt{5})}{(3 -\sqrt{5})}

= \frac{21 - 7 \sqrt{5} + 9\sqrt{5} - (3 X 5)}{(3^{2}) - (\sqrt{5} ^{2}) }    \\

= \frac{21 - 7 \sqrt{5} + 9\sqrt{5} - 15}{ 9 - 5 }    \\\\

= \frac{6 + 2\sqrt{5} }{4 }    \\

II. \frac{(7 - 3\sqrt{5}) }{(3- \sqrt{5}) }\\\\

Rationalizing factor = 3 + \sqrt{5}

\frac{(7 - 3\sqrt{5}) }{(3- \sqrt{5}) }\\\\  X \frac{(3 + \sqrt{5})}{(3 + \sqrt{5})}

= \frac{21 + 7 \sqrt{5} - 9\sqrt{5} - (3 X 5)}{(3^{2}) - (\sqrt{5} ^{2}) }    \\

= \frac{21 + 7 \sqrt{5} - 9\sqrt{5} - 15}{ 9 - 5 }    \\\\

= \frac{6 - 2\sqrt{5} }{4 }    \\

I - II :

= \frac{6 + 2\sqrt{5} }{4 }  -  \frac{6 - 2\sqrt{5} }{4 }    \\

= \frac{2(3 + \sqrt{5}) }{4} - \frac{2(3 - \sqrt{5}) }{4} \\\\

= \frac{3 + \sqrt{5} }{2} -  \frac{3 - \sqrt{5} }{2} \\\\= \frac{3 + \sqrt{5} - (3 - \sqrt{5}) }{2} \\\\= \frac{3 + \sqrt{5} - 3 + \sqrt{5}) }{2} \\\\\\= \frac{2\sqrt{5} }{2} \\\\\\= \sqrt{5}

Similar questions