Math, asked by SUSMK, 1 year ago

simplify by rationalizing the denominator root12+root18/root75-root50

Answers

Answered by DaIncredible
2
Hey friend,
Here is the answer you were looking for:
 \frac{ \sqrt{12} +  \sqrt{18}  }{ \sqrt{75}  -  \sqrt{50} }  \\


We can split it and write it as

 \frac{ \sqrt{2 \times 2 \times 3} +  \sqrt{2 \times 3 \times 3}  }{ \sqrt{5 \times 5 \times 5} -  \sqrt{5 \times 5 \times 2}  }  \\  \\  = \frac{ \sqrt{3 \times  {2}^{2} } +  \sqrt{2 \times  {3}^{2} }  }{ \sqrt{5 \times  {5}^{2} } -  \sqrt{2 \times  {5}^{2} }  }  \\  \\  =  \frac{2 \sqrt{3}  + 3 \sqrt{2} }{5 \sqrt{5}  - 5 \sqrt{2} }  \\

On rationalizing the denominator we get,

 \frac{2 \sqrt{3}  + 3 \sqrt{2} }{5 \sqrt{5}  - 5 \sqrt{2} }  \times \frac{5 \sqrt{5}  + 5 \sqrt{2} }{5 \sqrt{5}  + 5 \sqrt{2} }  \\

Using the Identity:

(a + b)(a - b) =  {a}^{2}  -  {b}^{2}


 \frac{2 \sqrt{3} (5 \sqrt{5}  + 5 \sqrt{2} ) + 3 \sqrt{2}(5 \sqrt{5}  + 5 \sqrt{2} ) }{ {(5 \sqrt{5}) }^{2}  -  {(5 \sqrt{2}) }^{2} }  \\  \\  =  \frac{2 \sqrt{3} \times 5 \sqrt{5} +2 \sqrt{3}   \times 5 \sqrt{2}   + 3 \sqrt{2}  \times 5 \sqrt{5}  + 3 \sqrt{2}   \times 5 \sqrt{2} }{125 - 50}  \\  \\  =  \frac{10 \sqrt{15}  + 10 \sqrt{6}  + 15 \sqrt{10}  + 30}{75}  \\  \\  =  \frac{2 \sqrt{15}  + 2 \sqrt{6}  + 3 \sqrt{10} + 6 }{25}

Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺
Similar questions