Math, asked by mohmmadashraf6005, 7 months ago

simplify by usinɡ law of exponents (6⁹×6⁴)÷12⁹​

Answers

Answered by DevyaniKhushi
0

 =  > ( {6}^{9} \times  {6}^{4}  ) \div  {12}^{9}  \\  \\ =  >  ( {6}^{9 + 4} ) \div   {12}^{9}   \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \small \tt \{ \because \:  \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n} \} \\ \\  =  >  {6}^{13}  \div  {12}^{9}   \\ \\   =  >  \frac{ {6}^{13} }{ {12}^{9} }  =  \frac{ {6}^{13} }{ {(6 \times 2)}^{9} }  \\  \\  =  >   \frac{ {6}^{13} }{ {6}^{9} \times  {2}^{9}  }  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \small \tt \{ \because \:  \: {(a \times b)}^{n}    =  {a}^{n}  \times  {b}^{n} \} \\  \\  =  >  \frac{ {6}^{(13 - 9)} }{ {2}^{9} }  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \small \tt \{ \because \:  \: \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{(m - n)}   \} \\  \\  =  >    \frac{ {6}^{4} }{ {2}^{9} }  =  \frac{ {(2 \times 3)}^{4} }{ {2}^{9} }    \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \small \tt \{ \because \:  \: {(a \times b)}^{n}    =  {a}^{n}  \times  {b}^{n} \}\\  \\  =  >  \frac{ {2}^{4}  \times  {3}^{4} }{ {2}^{9} }  \\  \\  =  >  {2}^{(4 - 9)}  \times  {3}^{4}  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \small \tt \{ \because \:  \: \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{(m - n)}   \} \\  \\  =  >  {2}^{( - 5)}  \times  {3}^{4}  \\  \\  =  >  \frac{ {3}^{4} }{ {2}^{5} }  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \small \tt \{ \because \:  \: {a}^{( - n)}   =  \frac{1}{ {a}^{n} }  \} \\  \\  =  >  \frac{3 \times 3 \times 3 \times 3}{2 \times 2 \times 2 \times 2 \times 2} \:  \:  \:  \:   =   \pink{\frac{81}{32} }

Similar questions