Math, asked by yazhini0111, 14 hours ago

Simplify
Class 8 Exponents and powers ​

Attachments:

Answers

Answered by ItzBrainlyLords
2

Simplifying :

  • (Take this L.H.S)

  \\ \large \rm \:  \leadsto \:  \:  \dfrac{( {3}^{5} {)}^{2}  \times  {5}^{3}  }{ {9}^{2} \times 5 }  \\

Solving :

  • Power ki power = power multiply

 \\  \large \sf \implies \:  \frac{ {3}^{10}  \times {5 }^{3} }{ {9}^{2}  \times 5}  \\  \\  \large \sf \:  \implies \:  \frac{59049 \times 125}{81 \times 5}  \\  \\  \\  \large \sf \implies \:  \frac{7381125}{405}  \\   \\ \\  \large \sf \underline{ \boxed{ \sf \:  = 18225}}  \: l.h.s\\

____________________________

Solving by identities :

  • (take it as R.H.S)

☞︎︎︎ In division, When the basis are same then the powers are subtracted.

 \\ \large \rm \:  \leadsto \:  \:  \dfrac{( {3}^{5} {)}^{2}  \times  {5}^{3}  }{ {9}^{2} \times 5 }  \\

Here,

  • 9² = (3²)²

 \\  \large \sf \implies \:  \frac{( {3}^{5} {) }^{2}   \times  {5}^{3} }{( {3}^{2} {)}^{2}  \times 5 }   \\  \\  \\  \large \sf \implies \:  \frac{{3}^{10}    \times  {5}^{3} }{{3}^{4} \times 5 }   \\   \\ \\  \large \sf \:   \implies \:  ({3}^{10}   \div  {3}^{4} ) \times ( {5}^{3}  \div  {5}^{1} ) \\  \\  \large \sf \implies \:  {3}^{10 - 4}  \times  {5}^{3 - 1}  \\  \\  \large \sf \implies \:  {3}^{6}  \times  {5}^{2}  \\  \\  \large \sf \implies \: 729 \times 25 \\  \\  \large \sf \underline{ \boxed{ \sf \: = 18225 }} \: r.h.s \\

R.H.S = L.H.S

  • Hence Proved
Answered by Anonymous
1
Please check the attachment!
Hope it helps
Thank you ✨
Attachments:
Similar questions