Math, asked by Shanthosh, 1 year ago

Simplify....Cos^-1(3/5cosx+4/5sinx)

Answers

Answered by Anonymous
95
using rule of inverse trigonometric function..

we can solve this

see attachment
____________________________

hope it will help u
Attachments:

Shanthosh: Thanks for your answer
Answered by kingofself
25

The value of \bold{\cos ^{-1}\left(\frac{3}{5} \cos x+\frac{4}{5} \sin x\right)\ is\ x-\tan ^{-1}\left(\frac{4}{3}\right)}

Solution:

Let \cos \theta=\frac{3}{5} ; r \sin \theta=\frac{4}{5} \dots \ldots \ldots \ldots(i)

Then squaring and adding both the r \cos \theta \text { and } r \sin \theta

(r \cos \theta)^{2}+(r \sin \theta)^{2}=\left(\frac{3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}

r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\frac{9}{25}+\frac{10}{25}

r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\frac{25}{25}

r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1

As we know that \left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1,

Then, r^{2}=1

r=\sqrt{1} \ldots \ldots \ldots(\text { ii) }

By Dividing  r \sin \theta \text { and } \cos \theta we can get,  

\frac{r \sin \theta}{r \cos \theta}=\frac{4}{3}

\frac{\sin \theta}{\cos \theta}=\tan \theta

Therefore, \tan \theta=\frac{4}{3}

\theta=\tan ^{-1}\left(\frac{4}{3}\right) \dots \ldots \ldots(i i i)

From the equations (i), (ii), (iii)  

\cos \theta=\frac{3}{5} ; \sin \theta=\frac{4}{5^{\prime}} \theta=\tan ^{-1}\left(\frac{4}{3}\right)

\Rightarrow \cos ^{-1}\left(\frac{3}{5} \cos x+\frac{4}{5} \sin x\right)

=\cos ^{-1}(\cos \theta \cos x+\sin \theta \sin x)

=\cos ^{-1}[\cos (x-\theta)]

=x-\theta

Substitute the value \theta=\tan ^{-1}\left(\frac{4}{3}\right)

=x-\tan ^{-1}\left(\frac{4}{3}\right)

Similar questions