Simplify cos theta[ matrix cos theta&sin theta\\ -sin theta&cos theta matrix ]+sin theta[ matrix sin theta&-cos theta\\ cos theta&sin theta matrix ]
Answers
Answer :
- The resulting matrix is a unit matrix of order 2 x 2.
- which is a unit matrix of order 2 x 2.
Answer :-✨....
To simplify the expression, let's expand the product and combine like terms:
First term:
cos(theta) * [cos(theta) sin(theta)
-sin(theta) cos(theta)]
= [cos^2(theta) sin(theta) cos(theta) - cos(theta) sin(theta) cos^2(theta)
-cos(theta) sin(theta) cos(theta) + sin^2(theta) cos(theta)]
= [cos^2(theta) sin(theta) - cos(theta) sin^2(theta)
-cos(theta) sin(theta) + sin^2(theta) cos(theta)]
= [sin(theta) cos^2(theta) - sin^2(theta) cos(theta)
-cos(theta) sin(theta) + sin^2(theta) cos(theta)]
= [sin(theta) (cos^2(theta) - sin^2(theta))
cos(theta) (sin^2(theta) - sin(theta))]
= [sin(theta) cos(2theta)
cos(theta) sin(2theta)]
Second term:
sin(theta) * [sin(theta) -cos(theta)
cos(theta) sin(theta)]
= [sin^2(theta) - cos^2(theta)
cos(theta) sin(theta) - sin(theta) cos(theta)]
= [-(cos^2(theta) - sin^2(theta))
sin(theta) (cos(theta) - sin(theta))]
= [-cos(2theta)
sin(theta) (cos(theta) - sin(theta))]
Adding the two terms together:
[sin(theta) cos(2theta) - cos(2theta)
cos(theta) sin(2theta) + sin(theta) (cos(theta) - sin(theta))]
= [-cos(2theta)
sin(theta) (cos(theta) - sin(theta))]
Therefore, the simplified expression is:
[-cos(2theta)
sin(theta) (cos(theta) - sin(theta))]