simplify
(cos3A+isin3A)^5(cosA-isinA)^3/(cos5A+isin5A)^7(cos2A-isin2A)^5
Answers
Answered by
1
Answer:
cos13A-isin13A
Step-by-step explanation:
e^(iA) = cosA + isinA
so as per above condition
(cos3A+isin3A)^5= {e^(3iA)}^5 = e^(15iA)
cosA-isinA = cos(-A)+isin(-A) because cos(-x) = cosx and sin(-x) = -sinx
(cosA- isinA)^3 = {e^(iA)}^3= e^(-3iA)
(cos5A+isin5A)^7 = e^(35iA)
(cos2A-isin2A)^5 = e^(-10iA)
so the given equitation will be written as
e^(15iA) × e^(-3iA)/e^(35iA) × e^(-10iA)
= e^(15iA-3iA-35iA+10iA)
= e^(-13iA)
= cos13A - isin13A
Similar questions
India Languages,
24 days ago
English,
24 days ago
Sociology,
1 month ago
Math,
9 months ago
Biology,
9 months ago
Computer Science,
9 months ago