Simplify cot^-1 ( 1 / √(x2−1) ) for x < -1.
Answers
Answer:
Sec⁻¹ x
Step-by-step explanation:
Given-----> Cot⁻¹ { 1 / √( x² - 1 ) }
To find------> Simplify given function
Solution-----> Let,
y = Cot⁻¹ { 1 / √( x² - 1 ) }
=> y = tan⁻¹ {√( x² - 1 ) }
Putting , x = Secθ
=> Sec⁻¹ ( x ) = Sec⁻¹ ( Secθ )
=> Sec⁻¹ ( x ) = θ
Now , y = tan⁻¹ [ √{ ( Secθ )² - 1 ]
=> y = tan⁻¹ { √( Sec²θ - 1 ) }
We know that , tan² A = Sec²A - 1 , applying it we get,
=> y = tan⁻¹ { √ tan²θ }
=> y = tan⁻¹ ( tanθ )
=> y = θ
Putting θ = Sec⁻¹ x , in it we get ,
=> y = Sec⁻¹ x
Additional information----->
1) Sin⁻¹ x + Cos⁻¹ x = π/2
2) tan⁻¹ x + Cot¹ x = π/2
3) Sec⁻¹ x + Cosec⁻¹ x = π/2
4) tan⁻¹ x + tan⁻¹ y = tan⁻¹ ( x+ y ) / ( 1 - xy )
5) tan⁻¹ x - tan⁻¹ y = tan⁻¹ ( x - y ) / ( 1 + xy )