Math, asked by abhirock51, 4 months ago

Simplify

Do not spam.....​

Attachments:

Answers

Answered by Sᴀɴᴀᴛᴀɴɪ
8

Answer:

f′(x)f′(x) gives you the slope of ff in x

Quite easily, if f′(x)f′(x) is positive, f(x)f(x) increases. If f′(x)f′

(x) is negative, f(x)f(x) decreases.

We know that, for y∈R∗+y∈R∗+

0<y<1⇔ln(y)<00<y<1⇔ln(y)<0

ln(1)=0ln(1)=0

1<y⇔ln(y)>01<y⇔ln(y)>0

So we can write that

f′(x)>0⇔ln(x2x+1)>0⇔x2x+1>1f′(x)>0⇔ln(x2x+1)>0⇔x2x+1>1

f′(x)<0⇔ln(x2x+1)<0⇔x2x+1<1f′(x)<0⇔ln(x2x+1)<0⇔x2x+1<1

f′(x)<0⇔ln(x2x+1)<0⇔x2x+1<1f′(x)<0⇔ln(x2x+1)<0⇔x2x+1<1If x<−1

Answered by GraceS
25

\tt\huge\purple{hello!!!}

HERE IS UR ANSWER

_____________________________

 {3}^{ - 5}  \times  \frac{1}{ {3}^{2} }  \times  \frac{1}{ {3}^{4} }  \times  {3}^{ - 2}  \\  {3}^{ - 5 - 2} \times  {3}^{ - 2 - 4}  \\  {3}^{13} ans

Similar questions