Math, asked by ayeshaz4hid, 1 day ago

Simplify each of the following , expressing you answer in positive index from ( with step-by-step explanation )

(a) a^5 ÷ a^-2

(b) b^4 ÷ √b × b^-7

(c)

Attachments:

Answers

Answered by YourHelperAdi
4

To Evalute:

 \displaystyle \rm 1)  \frac{{a}^{5} }{ {a}^{ - 2} }

\displaystyle \rm2)  \frac{ {b}^{4} }{ \sqrt{b} }  \times  {b}^{ - 7}

\displaystyle \rm 3) (\frac{ {c}^{2}d }{ {c}^{2}  {d}^{ - 2} }  {)}^{ - 5}

Solution :

 \displaystyle \rm 1)  \frac{{a}^{5} }{ {a}^{ - 2} }

Now, we will use the Identity:

\displaystyle \rm  \bull  \frac{ {x}^{y} }{ {x}^{z} }  =  {x}^{y - z}

So, We get that :

\displaystyle \rm  \implies \frac{ {a}^{5} }{ {a}^{ - 2} }  =  {a}^{5- ( - 2)}

 \implies \displaystyle \rm  \frac{ {a}^{ 5} }{ {a}^{ - 2} }  =  {a}^{5  + 3}

 \red{ \underline{ \boxed{ \implies \displaystyle \rm  \frac{ {a}^{ 5} }{ {a}^{ - 2} }  =  {a}^{8} }}}

__________________________

\displaystyle \rm2)  \frac{ {b}^{4} }{ \sqrt{b} }  \times  {b}^{ - 7}

Using The Identities:

 \bull \displaystyle \rm  \sqrt{x} =  {x}^{ \frac{1}{2} }

 \bull \displaystyle \rm  \frac{ {x}^{y} }{ {x}^{z} }  =  {x}^{y - z}

 \bull \displaystyle \rm  {x}^{y }  \times  {x}^{z}  =  {x}^{y + z}

So, we get that :

\displaystyle \rm \implies \frac{ {b}^{4} }{ \sqrt{b} }  \times  {b}^{ - 7}  =  \frac{ {b}^{4} }{ {b}^{ \frac{1}{2} } }  \times  {b}^{ - 7}

\displaystyle \rm \implies \frac{ {b}^{4} }{ \sqrt{b} }  \times  {b}^{ - 7}  =   {b}^{(4 -  \frac{1}{2}) }  \times  {b}^{ - 7}

\displaystyle \rm \implies \frac{ {b}^{4} }{ \sqrt{b} }  \times  {b}^{ - 7}  =   {b}^{ \frac{7}{2} }  \times  {b}^{ - 7}

\displaystyle \rm \implies \frac{ {b}^{4} }{ \sqrt{b} }  \times  {b}^{ - 7}  =   {b}^{ \frac{7}{2} + ( - 7) }

\displaystyle \rm \implies \frac{ {b}^{4} }{ \sqrt{b} }  \times  {b}^{ - 7}  =   {b}^{ \frac{ - 7}{2}}

 \blue{ \underline{ \boxed{\displaystyle \rm \implies \frac{ {b}^{4} }{ \sqrt{b} }  \times  {b}^{ - 7}  =    {( \frac{1}{b}) }^{( \frac{7}{2} )} }}}

You can further write it as :

\displaystyle \rm  \implies  \sqrt{  {( \frac{1}{b} )}^{7} }

__________________________

\displaystyle \rm 3) (\frac{ {c}^{2}d }{ {c}^{2}  {d}^{ - 2} }  {)}^{ - 5}

All the Identities here are already used :

\displaystyle \rm \implies (\frac{ {c}^{2}d }{ {c}^{2}  {d}^{ - 2} }  {)}^{ - 5}  = ( \frac{ {c}^{2} }{ {c}^{2} }  \times  { \frac{d}{ {d}^{ - 2} } )}^{ - 5}

\displaystyle \rm \implies (\frac{ {c}^{2}d }{ {c}^{2}  {d}^{ - 2} }  {)}^{ - 5}  = ( \cancel{ \frac{ {c}^{2} }{ {c}^{2} }  }\times  { {d}^{ 1 - ( - 2)} )}^{ - 5}

\displaystyle \rm \implies (\frac{ {c}^{2}d }{ {c}^{2}  {d}^{ - 2} }  {)}^{ - 5}  = (1\times  { {d}^{ 1  + 2} )}^{ - 5}

\displaystyle \rm \implies (\frac{ {c}^{2}d }{ {c}^{2}  {d}^{ - 2} }  {)}^{ - 5}  = (1\times  { {d}^{ 3} )}^{ - 5}

\displaystyle \rm \implies (\frac{ {c}^{2}d }{ {c}^{2}  {d}^{ - 2} }  {)}^{ - 5}  = ( { {d}^{ 3} )}^{ - 5}

\displaystyle \rm \implies (\frac{ {c}^{2}d }{ {c}^{2}  {d}^{ - 2} }  {)}^{ - 5}  = {d}^{ 3 \times ( - 5)}

\displaystyle \rm \implies (\frac{ {c}^{2}d }{ {c}^{2}  {d}^{ - 2} }  {)}^{ - 5}  = {d}^{  - 15}

 \green{ \underline{  \boxed{\displaystyle \rm \implies (\frac{ {c}^{2}d }{ {c}^{2}  {d}^{ - 2} }  {)}^{ - 5}  =  { (\frac{1}{d}) }^{15} }}}

Answered by choudhryhello
0

1. a⁸

2. b⁷/²

3. 1/d¹⁵

Similar questions