Math, asked by guitarrockerr8, 1 month ago

simplify each of the following .
 ({9}^{2})  ^{4}
 {(h}^{2}) {}^{5}
 \frac{ {14}^{13} }{ {7}^{13} }
 \frac{ {(9}^{5} ){}^{4}  }{ {3}^{20} }

Answers

Answered by GraceS
24

\sf\huge\bold{Answer:}

\fbox{Solution 1}

\sf = ({9}^{2}) ^{4}

\sf\purple{:⟶(a {}^{m} ) {}^{n}  = a {}^{m \times n} }

\sf =  {9}^{2 \times 4}

\sf =  {9}^{8}

\sf = 43,046,721

\sf\huge\purple{ 43,046,721 }

\fbox{Solution 2}

\sf = {(h}^{2}) {}^{5}

\sf\purple{:⟶(a {}^{m} ) {}^{n}  = a {}^{m \times n} }

\sf = {h}^{2 \times 5}

\sf = h {}^{10}

\sf\huge\purple{h {}^{10} }

\fbox{Solution 3}

\sf = \frac{ {14}^{13} }{ {7}^{13} } \\

\sf\purple{:⟶(ab) {}^{m}  = a {}^{m}  \times b {}^{m} }

\sf =  \frac{(7 \times 2) {}^{13} }{ {7}^{13} }  \\

 \sf =  \frac{ {7}^{13}  \times  {2}^{13} }{ {7}^{13} }  \\

\sf{=}\displaystyle{\sf { \cancel{ \frac{7¹³}{7¹³} }}}\sf ×2¹³

\sf =  {2}^{13}

\sf = 8,192

\sf\huge\purple{8,192 }

\fbox{Solution 4 }

 =  \frac{ {(9}^{5} ){}^{4} }{ {3}^{20} } \\

\sf\purple{:⟶(a {}^{m} ) {}^{n}  = a {}^{m \times n} }

 =  \frac{9 {}^{5 \times 4} }{ {3}^{20} }  \\

 =  \frac{9 {}^{20} }{ {3}^{20} }  \\

\sf\purple{:⟶(ab) {}^{m}  = a {}^{m}  \times b {}^{m} }

 =  \frac{(3 \times 3) {}^{20} }{ {3}^{20} }  \\

 =  \frac{3 {}^{20} \times  {3}^{20}  }{ {3}^{20} }  \\

\sf{=}\displaystyle{\sf { \cancel{ \frac{3 {}^{20}}{3 {}^{20}} }}}\sf × 3 {}^{20}

\sf =  {3}^{20}

\sf = 3,486,784,401

\sf\huge\purple{ 3,486,784,401}

Similar questions