Math, asked by malikkiswafatimah67, 4 months ago

simplify each of the following
 \frac{ {15a}^{2} }{8ab {}^{2}c }  \times  \frac{4c}{5ab}

Answers

Answered by MrImpeccable
11

ANSWER:

To Simplify:

 \:\:\:\:\bullet \sf{\dfrac{15a^2}{8ab^2c} \times \dfrac{4c}{5ab}}

Solution:

:\longrightarrow \sf{\dfrac{15a^2}{8ab^2c} \times \dfrac{4c}{5ab}} \\\\\text{Combining the fractions,} \\\\:\implies \sf{\dfrac{15a^2*4c}{8ab^2c*5ab}}\\\\\text{Solving it,}\\\\:\implies \sf{\dfrac{{15\!\!\!\!/}^{\:3} * {a^2\!\!\!\!/}^{{\:\:a\!\!\!/}} * {4\!\!\!/} * {c\!\!/} }{{8\!\!\!/}_{\:2} * {a\!\!\!/} * b^2 * {c\!\!\!/} * {5\!\!\!\!/\:\:} * {a\!\!\!/} * b}} \\\\:\implies \sf{\dfrac{3 * 1}{2 * b^2 * b}} \\\\:\implies \bf{\dfrac{3}{2b^3}}

Important Points:

  • Always give the answer in standard(or simplified) form.
  • Reduce mistakes while multiplying and dividing by doing it with small quantities.

Learn More:

 \begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Laws of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}

Similar questions