Math, asked by guri1474, 5 months ago

simplify exponents and powers 12⁴X9³X4 /(over/upon). 6³X8²X 27 pls explain the answer​

Answers

Answered by harshitha926594
3

Answer:

 \frac{ {12}^{4} \times  {9}^{3}  \times 4 }{ {6}^{3}  \times  {8}^{2}  \times 27}  \\  =  \frac{ {(3 \times 2 \times 2)}^{4} \times   { ({3}^{2}) }^{3}  \times  {2}^{2} }{ {(3 \times 2)}^{3} \times  {( {2}^{3}) }^{2}  \times  {3}^{3} } \\  =  \frac{( {3}^{4}  \times  {2}^{4} \times  {2}^{4} ) \times  {3}^{2 \times 3}  \times  {2}^{2}  }{( {3}^{3}  \times  {2}^{3}) \times  {2}^{3 \times 2}  \times  {3}^{3}  }  \\  =  \frac{ {3}^{4} \times  {2}^{4}  \times  {2}^{4}  \times  {3}^{6} \times  {2}^{2}   }{ {3}^{3}  \times  {2}^{3} \times  {2}^{6} \times  {3}^{3}}  \\  =  \frac{ {(3)}^{4 + 6} \times  {(2)}^{4 + 4 + 2}  }{ {(3)}^{3 + 3} \times  {(2)}^{3 + 6} }  \\  =  \frac{ {3}^{10}  \times  {2}^{10} }{ {3}^{6} \times  {2}^{9}  }  \\  =  {(3)}^{10 - 6}  \times  {(2)}^{10 - 9}  \\  =  {3}^{4}  \times  {2}^{1}  \\  = 81 \times 2 \\   \boxed{= \underline{ \underline{ 162}}}

Remember these points while solving like this problems :

 (a \times b)^3 = a^3 \times b^3 \\ \frac{a^6}{a^4} = a^{6-4} = a^2 \\ a^6 \times a^3 = a^{6+3} = a^9 \\ {({a}^{3})}^{2} = a^{3 \times 2} = a^6

Hope, you understood the above solution

Similar questions