Math, asked by 24DP1195, 11 months ago

Simplify $\frac{2\sqrt[3]9}{1 + \sqrt[3]3 + \sqrt[3]9}.$

Answers

Answered by amitnrw
14

Given :    \frac{2\sqrt[3]9}{1 + \sqrt[3]3 + \sqrt[3]9}.    or 2∛9 / ( 1 + ∛3  + ∛9)

To find : Simplify  ( rationalize)

Solution:

\frac{2\sqrt[3]9}{1 + \sqrt[3]3 + \sqrt[3]9}.

2∛9 / ( 1 + ∛3  + ∛9)

a = ∛3   ,    b =  1

=> a² =  ∛9    ab = ∛3   b² = 1

as we know that (a - b) (a² + ab + b²)   = a³ - b³

Hence multiplying numerator & denominator with a - b  i.e.  ∛3  - 1

= 2∛9  (   ∛3 - 1 ) / ( 3 - 1 )

= 2∛9  (   ∛3 - 1 )/ 2

= ∛9  (   ∛3 - 1 )

= ∛27 - ∛9

= 3 - ∛9

2∛9 / ( 1 + ∛3  + ∛9)  = 3 - ∛9

\frac{2\sqrt[3]9}{1 + \sqrt[3]3 + \sqrt[3]9} = 3 -  \sqrt[3]9

Learn more:

rationalize the denominator of 4root3/5root5 and hence find their ...

https://brainly.in/question/17248397

(a) Rationalize the denominator: 14/ 5√3 − √5 Please Send solutions

https://brainly.in/question/5471829

Similar questions