Math, asked by 1Dsubha, 1 year ago

Simplify : \frac{6}{ 2\sqrt{3}- \sqrt{6}} + \frac{ \sqrt{6} }{ \sqrt{3}+ \sqrt{2}} - \frac{4 \sqrt{3} }{ \sqrt{6} -\sqrt{2}}


DaIncredible: well... please post the image of the question
DaIncredible: it's not understandable

Answers

Answered by DaIncredible
16
Hey friend,
Here is the answer you were looking for:
 \frac{6}{2 \sqrt{3} -  \sqrt{6}  }  +  \frac{ \sqrt{6} }{ \sqrt{3} +  \sqrt{2}  }  -  \frac{4 \sqrt{3} }{ \sqrt{6} -  \sqrt{2}  }  \\

On rationalizing the denominator we get:

 \frac{6}{2 \sqrt{3}  -  \sqrt{6} } \times  \frac{2 \sqrt{3}  +   \sqrt{6}  }{2 \sqrt{3}   +   \sqrt{6} }   +   \frac{ \sqrt{6} }{ \sqrt{3} +  \sqrt{2}  }  \times  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  -  \frac{4 \sqrt{3} }{ \sqrt{6}   - \sqrt{2} }  \times  \frac{ \sqrt{6}  +  \sqrt{2} }{ \sqrt{6} +  \sqrt{2}  }   \\

Using the identity :

(a + b)(a - b) =  {a}^{2}  -  {b}^{2}

 \frac{6(2 \sqrt{3} +  \sqrt{6} ) }{ {(2 \sqrt{3} )}^{2} -  {( \sqrt{6} )}^{2}  }  +  \frac{ \sqrt{6}( \sqrt{3}   -  \sqrt{2} )}{ {( \sqrt{3} )}^{2} -  {( \sqrt{2}) }^{2}  }  -  \frac{ 4\sqrt{3}( \sqrt{6} +  \sqrt{2}   )}{ {( \sqrt{6} })^{2} -  {( \sqrt{2} })^{2}  }  \\

 =  \frac{12 \sqrt{3}  + 6 \sqrt{6} }{12 - 6}  +  \frac{ \sqrt{18} -  \sqrt{12}  }{3 - 2}  -  \frac{4 \sqrt{18}  + 4 \sqrt{6} }{6 - 2}  \\  \\  \\  =  \frac{12 \sqrt{3}  + 6 \sqrt{6} }{6}  +  \sqrt{2 \times 3 \times 3}  -  \sqrt{2 \times 2 \times 3}  -  \frac{4 \sqrt{2 \times 3 \times 3}  + 4 \sqrt{6} }{4}  \\  \\  \\  = 2 \sqrt{3}  +  \sqrt{6}  + 3 \sqrt{2}  - 2 \sqrt{3}  -  \frac{4 \times 3 \sqrt{2}  + 4 \sqrt{6} }{4}  \\  \\  \\  = 2 \sqrt{3}  +  \sqrt{6}  + 3 \sqrt{2}  - 2 \sqrt{3}  - 3 \sqrt{2}  -  \sqrt{6}  \\  \\  = 0

Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺

BrainlyHulk: Excellent !!
DaIncredible: thanks sir ^_^ glad you liked it
rohitkumargupta: :-)
Similar questions