Math, asked by AnanyaBaalveer, 2 days ago

Simplify =>
i⁵⁹²+i⁵⁹⁰+i⁵⁸⁸+i⁵⁸⁶+i⁵⁸⁴/i⁵⁸²+i⁵⁸⁰+i⁵⁷⁸+i⁵⁷⁶+i⁵⁷⁴​​

Answers

Answered by XxPratyakshxX
6

Step-by-step explanation:

hope these two attachment helps you

have a great day ahead

Attachments:
Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \dfrac{{i}^{592} + {i}^{590} + {i}^{588} + {i}^{586} + {i}^{584}}{{i}^{582} + {i}^{580} + {i}^{578} + {i}^{576} + {i}^{574}}  \\

\rm \:  =  \: \dfrac{{i}^{584}({i}^{8} +  {i}^{6}  +  {1}^{4}  +  {i}^{2}  + 1)}{{i}^{574}({i}^{8} +  {i}^{6}  +  {1}^{4}  +  {i}^{2}  + 1)}  \\

\rm \:  =  \: \dfrac{{i}^{584}}{{i}^{574}}  \\

We know,

\boxed{ \rm{ \: {x}^{m}  \div  {x}^{n}  \:  =  \:  {x}^{m - n}  \:  \: }} \\

So, using this identity, we get

\rm \:  =  \:  {i}^{584 - 574}  \\

\rm \:  =  \:  {i}^{10}  \\

\rm \:  =  \:  {( {i}^{2}) }^{5}  \\

We know,

\color{green}\boxed{ \rm{ \: \:  {i}^{2}  \:  =  \:  -  \: 1 \:  \: }} \\

So, using this result, we get

\rm \:  =  \:  {( - 1)}^{5}  \\

\rm \:  =  \:  - 1 \\

Hence,

\color{green}\boxed{ \rm{ \:\rm \: \dfrac{{i}^{592} + {i}^{590} + {i}^{588} + {i}^{586} + {i}^{584}}{{i}^{582} + {i}^{580} + {i}^{578} + {i}^{576} + {i}^{574}}  \: =  \:  -  \: 1 \: }}  \\

\rule{190pt}{2pt}

Additional Information :-

Argument of complex number :-

\color{blue}\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Similar questions