Math, asked by aliashiha13, 3 months ago

simplify i^2020 + i^2020

challenge question please answer and it's urgent!​

Answers

Answered by Asterinn
39

We have to simplify the given expression :-

 \longrightarrow \rm   \large{i}^{2020}  +  {i}^{2020}   \\  \\ \rm \: where \:  \: i =  \sqrt{ - 1}   \\   \\  \longrightarrow \rm   \large{( {i}^{2} )}^{1010}  +  { ({i}^{2}) }^{1010}  \\   \\ \\  \longrightarrow \rm   \large{( {i}^{2} )}^{1010}  +  { ({i}^{2}) }^{1010}   \\ \\   \\ \rm we \: know \: that :\rightarrow \:  { {i}^{2} } =  - 1\\   \\ \\  \longrightarrow \rm   \large{(  - 1)}^{1010}  +  { ( - 1) }^{1010}\\   \\ \\  \longrightarrow \rm   \large1 +  1\\   \\ \\  \longrightarrow \rm   \large2

Answer :- 2

Additional Information :-

Properties of Modules :-

If X = a+bi then ,

1) | X | = |- X |

2) | X₁ X₂ | = | X₁ | | X₂ |

3) | X₁ / X₂ | = | X₁ | / | X₂ |

4) | X₁ + X₂ | ≠ | X₁ | + | X₂ |

Properties of argument :-

1) Arg(0) = not defined

2) If X is purely imaginary number then , arg(X) = ± (π/2)

3) Arg( X₁ X₂) = Arg( X₁ ) + Arg( X₂) + 2mπ

4) Arg( X₁ - X₂) = Arg( X₁ ) - Arg( X₂) + 2mπ

5) Arg( Xⁿ) = n Arg( Xⁿ) + 2mπ


Ataraxia: Nice! (:
Asterinn: Thankyou! :D
Similar questions