Simplify:
(i) (3 +√3)(2+√2)
(ii) (√3 + √2)^2
(ii) (6+√6)(6-√6)
(iv) (√5 - √2)(√5+√2)
Don't spam
need help of experts !
Answers
Answer:-
We have to simplify:-
i) (3 + √3)(2 + √2)
Using (a + b)(c + d) = a(c + d) + b(c + d) we get,
⟹ 3(2 + √2) + √3 (2 + √2)
⟹ 3(2) + 3(√2) + (√3)(2) + (√3)(√2)
⟹ 6 + 3√2 + 2√3 + √(3 × 2). [ ∵ √a × √b = √ab ]
⟹ (3 + √3)(2 + √2) = 6 + 3√2 + 2√3 + √6
___________________________________
ii) (√3 + √2)²
using (a + b)² = a² + b² + 2ab we get,
⟹ (√3)² + (√2)² + 2(√3)(√2)
⟹ 3 + 2 + 2√6 [ ∵ (√a)² = a ]
⟹ (√3 + √2)² = 5 + 2√6
____________________________________
iii) (6 + √6)(6 - √6)
using (a + b)(a - b) = a² - b² we get,
⟹ (6)² - (√6)²
⟹ 36 - 6
⟹ (6 + √6)(6 - √6) = 30
____________________________________
iv) (√5 - √2)(√5 + √2)
Again using a² - b² = (a + b)(a - b) we get,
⟹ (√5)² - (√2)²
⟹ 5 - 2
⟹ (√5 - √2)(√5 + √2) = 3
____________________________________
Some important formulae:-
- (a + b)² = a² + b² + 2ab
- (a - b)² = a² + b² - 2ab
- a² + b² = (a + b)² - 2ab
- a² + b² = (a - b)² + 2ab
- (a + b)³ = a³ + b³ + 3ab(a + b)
- (a - b)³ = a³ - b³ - 3ab(a - b)
- a³ + b³ = (a + b)³ - 3ab(a + b)
- a³ + b³ = (a + b)(a² - ab + b²)
- a³ - b³ = (a - b)³ + 3ab(a - b)
- a³ - b³ = (a - b)(a² + ab + b²)
Question :
Simplify:
(i) (3 +√3)(2+√2)
(ii) (√3 + √2)²
(iii) (6+√6)(6-√6)
(iv) (√5 - √2)(√5+√2)
Solution :
we have
(i) (3 +√3)(2+√2)
= 3×2 +3 ×√2 +√3×2+√3×√2
= 6+3√2 + 2√3 +√6.
(ii) (√3 + √2)²
= (√3)² + (√2)²+2×√3×√2
[ ∵ ( a - b ) ( a + b) = a² - b² ]
= 3+2+2√6= 5 +2√6.
(iii) (6+√6)(6-√6)
= (6)² - (√6)²
[ ∵ ( a - b ) ( a + b) = a² - b² ]
= (36 - 6 ) = 30
(iv) (√5 - √2)(√5+√2)
= (√5)² - (√2)²
[ ∵ ( a - b ) ( a + b) = a² - b² ]
= 5 - 2 = 3.