Math, asked by Thee7, 2 months ago

Simplify
Inverse trigonometry

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \tan^{ - 1}  \bigg \{\frac{ \cos(x) }{1 -  \sin(x) }  \bigg \}  \\

  = \tan^{ - 1}  \bigg \{\frac{ \cos^{2} ( \frac{x}{2} )  -  \sin ^{2} ( \frac{x}{2} ) }{1 -  2\sin( \frac{x}{2} ) \cos( \frac{x}{2} )  }  \bigg \}  \\

  = \tan^{ - 1}  \bigg  [ \frac{  \{\cos ( \frac{x}{2} )  -  \sin ( \frac{x}{2} ) \} \{ \cos( \frac{x}{2} ) +  \sin( \frac{x}{2} )   \} }{ \cos^{2} ( \frac{x}{2} )  +  \sin ^{2} ( \frac{x}{2} ) -  2\sin( \frac{x}{2} ) \cos( \frac{x}{2} )  }  \bigg]   \\

  = \tan^{ - 1}  \bigg  [ \frac{  \{\cos ( \frac{x}{2} )  -  \sin ( \frac{x}{2} ) \} \{ \cos( \frac{x}{2} ) +  \sin( \frac{x}{2} )   \} }{ \{ \cos ( \frac{x}{2} )   +  \sin  ( \frac{x}{2} ) \}^{2}   }  \bigg]   \\

  = \tan^{ - 1}  \bigg  [ \frac{  \{\cos ( \frac{x}{2} )  -  \sin ( \frac{x}{2} ) \} \{ \cos( \frac{x}{2} ) +  \sin( \frac{x}{2} )   \} }{ \{ \cos ( \frac{x}{2} )   +  \sin  ( \frac{x}{2} ) \} \{ \cos ( \frac{x}{2} )   +  \sin  ( \frac{x}{2} ) \}}  \bigg]   \\

  = \tan^{ - 1}  \bigg  [ \frac{  \cos ( \frac{x}{2} )  -  \sin ( \frac{x}{2} )  }{ \cos ( \frac{x}{2} )   +  \sin  ( \frac{x}{2} )  }  \bigg]   \\

  = \tan^{ - 1}  \bigg  [ \frac{  \frac{ \cos ( \frac{x}{2} )  -  \sin ( \frac{x}{2} ) }{ \cos( \frac{x}{2} ) } }{ \frac{ \cos ( \frac{x}{2} )   +  \sin  ( \frac{x}{2} )}{ \cos( \frac{x}{2} ) }  }  \bigg]   \\

  = \tan^{ - 1}  \bigg  [ \frac{1  -  \tan ( \frac{x}{2} )  }{1  +  \tan( \frac{x}{2} )  }  \bigg]   \\

  = \tan^{ - 1}  \bigg  [ \frac{ \tan( \frac{\pi}{4} )  -  \tan ( \frac{x}{2} )  }{1  +   \tan( \frac{\pi}{2} ) \tan( \frac{x}{2} )  }  \bigg]   \\

  = \tan^{ - 1}  \bigg \{  \tan  \bigg( \frac{\pi}{4}  -  \frac{x}{2} \bigg )  \bigg \}  \\

  =  \frac{\pi}{4}  -  \frac{x}{2}   \\

Similar questions