Math, asked by gamingqwertypoiuy, 6 hours ago

simplify it and Answer ​

Attachments:

Answers

Answered by Swapnilbro
3

Answer:

 \frac{ \sqrt{18} }{5 \sqrt{18} + 3 \sqrt{72} + 2 \sqrt{162}   }

 \frac{ \sqrt{18} }{5 \sqrt{18} + 3 \sqrt{4 \times 18} + 2 \sqrt{9 \times 18}   }

 \frac{ \sqrt{18} }{5 \sqrt{18} + 3 \times 2 \sqrt{18} + 2 \times 3 \sqrt{18}   }

 \sqrt{4}  = 2 \:  \: and \:  \:  \sqrt{9}  = 3

 \frac{ \sqrt{18} }{5 \sqrt{18} + 6 \sqrt{18} + 6 \sqrt{18}   }

 \frac{ \sqrt{18} }{17 \sqrt{18} }

 \frac{1}{17}

Answered by Cynefin
9

Required Answer:-

Here we have some complex surds. First of all, simplify the surds into the simplest form. Refee to the attachment.

We got,

  • √18 = 3√2
  • √72 = 6√2
  • √162 = 9√2

Simplifying the above question,

 \large{= \frac{ \sqrt{18} }{5 \sqrt{18}  + 3 \sqrt{72}  + 2 \sqrt{162} }}

\large{  = \frac{3 \sqrt{2} }{5 \times 3 \sqrt{2} + 3 \times 6 \sqrt{2}   + 2 \times 9 \sqrt{2} }}

 \large{=  \frac{3 \sqrt{2} }{15 \sqrt{2} + 18 \sqrt{2} + 18 \sqrt{2}  }}

 \large{=  \frac{3 \sqrt{2} }{51\sqrt{2} } }

 \large{=  \frac{1}{17} ( \tt{ans})}

And the simplified form is 1/17

Attachments:
Similar questions