Math, asked by sri77777, 1 year ago

Simplify it by rationalising the denominator
√7-√5/√7+√5

Answers

Answered by Anonymous
17
Hey friend

Here is your answer

  = \frac{ \sqrt{7}  -  \sqrt{5} }{ \sqrt{7} +  \sqrt{5}  }  \\  \\  =  \frac{ \sqrt{7}  -  \sqrt{5} }{ \sqrt{7} +  \sqrt{5}  }  \times  \frac{ \sqrt{7} -  \sqrt{5}  }{ \sqrt{7} -  \sqrt{5}  }  \\  \\   =   \frac{ {( \sqrt{7} -  \sqrt{5}  )}^{2} }{( \sqrt{7}  +  \sqrt{5}) ( \sqrt{7}  -  \sqrt{5)} } \\  \\ using \: following \: identities \\  \\ 1) {(a  -  b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab \\  \\ 2)(a  + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =    \frac{ ({ \sqrt{7} )}^{2} +  {( \sqrt{5} )}^{2}  - 2 \times  \sqrt{7}  \times  \sqrt{5}  }{ {( \sqrt{7} )}^{2} -  {( \sqrt{5} )}^{2} }   \\  \\  =  \frac{7 + 5 - 2 \sqrt{35} }{7 - 5}  \\  \\  =  \frac{12 - 2 \sqrt{35} }{2}  \\  \\  =  \frac{2(6 -  \sqrt{35)} }{2}  \\  \\  = 6 -  \sqrt{35}  \\  \\

Hope this helps you ☺

sri77777: Thanks a lot
Anonymous: ur welcome :-)
Answered by Anonymous
8
Hey friend !!!!

•°• Refer to the attached file •°•

Hope it satisfies you ☆▪☆

Thanks ^_^

☆ Be Brainly ☆
Attachments:
Similar questions