Math, asked by winxghazalpd5izh, 11 months ago

Simplify it no spam

Attachments:

Answers

Answered by ihrishi
0

Answer:

 \frac{ {4}^{3x - 1} \times  {16}^{2x - 1}  }{ {32}^{3x - 1} }  \\  =  \frac{ {( {2}^{2} )}^{3x - 1} \times  {( {2}^{4} )}^{2x - 1}  }{ {( {2}^{5} )}^{3x - 1} } \\  =  \frac{ {2}^{6x - 2} \times  {2}^{8x - 4}  }{ {2}^{15x - 5} }  \\  =  \frac{ {2}^{6x - 2 + 8x - 4} }{ {2}^{15x - 5} }  \\ =  \frac{ {2}^{14x - 6 } }{ {2}^{15x - 5} }  \\  =  {2}^{14x - 6  -  (15x - 5)} \\  =  {2}^{14x - 6  -  15x  + 5} \\  =  {2}^{ -  x - 1}  \\  = {2}^{ -  (x  +  1)} \\  =  \frac{1}{ {2}^{   (x  +  1)}}

Similar questions