Math, asked by khushi2005, 1 year ago

Simplify it



pls answer it​

Attachments:

Answers

Answered by Anonymous
3

\mathrm{Question : \dfrac{\sqrt{3} + 1}{2\sqrt{2} - \sqrt{3}}}

\mathrm{Multiply\;and\;Divide\;with\;2\sqrt{2} + \sqrt{3}}

\mathrm{\longrightarrow \dfrac{(\sqrt{3} + 1)(2\sqrt{2} + \sqrt{3})}{(2\sqrt{2} - \sqrt{3})(2\sqrt{2} + \sqrt{3})}}

\mathrm{\longrightarrow \dfrac{(\sqrt{3})(2\sqrt{2}) + (\sqrt{3})^2 + 2\sqrt{2} + \sqrt{3}}{(2\sqrt{2})^2 - (\sqrt{3})^2}}

\mathrm{\longrightarrow \dfrac{2\sqrt{2 \times 3} + 3 + 2\sqrt{2} + \sqrt{3}}{(2)^2(\sqrt{2})^2 - 3}}

\mathrm{\longrightarrow \dfrac{2\sqrt{6} + 3 + 2\sqrt{2} + \sqrt{3}}{(4)(2) - 3}}

\mathrm{\longrightarrow \dfrac{2\sqrt{6} + 3 + 2\sqrt{2} + \sqrt{3}}{8 - 3}}

\mathrm{\longrightarrow \dfrac{2\sqrt{6} + 3 + 2\sqrt{2} + \sqrt{3}}{5}}

Answered by mastertimixa
0

Answer:(\sqrt{3} +\sqrt{1} )(\sqrt{4} +\sqrt{3})

Similar questions