Math, asked by virat9779817, 9 days ago

Simplify: log 64 to the base 16 - log 16 is equal to
answer =5/6

Answers

Answered by shreya09undru
0

Step-by-step explanation:

Expression \log_{16}64-\log_{64}16log

16

64−log

64

16

To find : Simplify the expression ?

Solution :

We solve the expression into parts,

Let \log_{16}64-\log_{64}16=x-ylog

16

64−log

64

16=x−y

So, x=\log_{16}64x=log

16

64

Applying logarithmic property, \log_b x=a\Rightarrow b^a=xlog

b

x=a⇒b

a

=x

16^x=6416

x

=64

(2^4)^x=2^6(2

4

)

x

=2

6

2^{4x}=2^62

4x

=2

6

As base are same power equates,

4x=64x=6

x=\frac{6}{4}x=

4

6

x=\frac{3}{2}x=

2

3

Similar approach for another term,

So, y=\log_{64}16y=log

64

16

Applying logarithmic property, \log_b x=a\Rightarrow b^a=xlog

b

x=a⇒b

a

=x

64^y=1664

y

=16

(4^3)^y=4^2(4

3

)

y

=4

2

4^{3y}=4^24

3y

=4

2

As base are same power equates,

3y=23y=2

y=\frac{2}{3}y=

3

2

Substitute the values back,

\log_{16}64-\log_{64}16=\frac{3}{2}-\frac{2}{3}log

16

64−log

64

16=

2

3

3

2

\log_{16}64-\log_{64}16=\frac{9-4}{6}log

16

64−log

64

16=

6

9−4

\log_{16}64-\log_{64}16=\frac{5}{6}log

16

64−log

64

16=

6

5

Therefore, \log_{16}64-\log_{64}16=\frac{5}{6}log

16

64−log

64

16= 5/6

Similar questions