Math, asked by bhanutejathammisetty, 3 months ago


Simplify: log3 to the base 4x log64 to the
base 243​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

\bf :\longmapsto\: log_{4}(3)  \times  log_{243}(64)

Consider,

\rm :\longmapsto\: log_{4}(3)

\rm \:  \:  =  \:  \:  log_{ {2}^{2} }(3)

\rm \:  \:  =  \:  \: \dfrac{1}{2} log_{2}(3)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: log_{ {a}^{p} }( {b}^{q} ) = \dfrac{q}{p} log_{a}(b)  \bigg \}}

Hence,

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \boxed{\rm :\longmapsto\: \bf \:  log_{4}(3) = \dfrac{1}{2} log_{2}(3)}}

Now,

Consider,

\rm :\longmapsto\: log_{243}(64)

\rm \:  \:  =  \:  \:  log_{ {3}^{5} }( {2}^{6} )

\rm \:  \:  =  \:  \: \dfrac{6}{5} log_{3}(2)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: log_{ {a}^{p} }( {b}^{q} ) = \dfrac{q}{p} log_{a}(b)  \bigg \}}

Hence,

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \boxed{\rm :\longmapsto\: \bf \:  log_{243}(64) = \dfrac{6}{5} log_{3}(2)}}

Now,

\bf :\longmapsto\: log_{4}(3)  \times  log_{243}(64)

\rm \:  \:  =  \:  \: \dfrac{1}{2}  log_{2}(3) \times \dfrac{6}{5}  log_{3}(2)

\rm \:  \:  =  \:  \: \dfrac{3}{5}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: log_{x}(y) \times  log_{y}(x) = 1\bigg \}}

 \boxed{\bf :\implies\: log_{4}(3)  \times  log_{243}(64) = \dfrac{3}{5}}

Additional Information :-

\boxed{ \sf \:  log_{x}(x) = 1 }

\boxed{ \sf \:  log_{x}(y) = \dfrac{1}{ log_{y}(x) } }

\boxed{ \sf \: log(1)  = 0 }

\boxed{ \sf \:  {a}^{ log_{a}(x)}  = x}

\boxed{ \sf \:  {a}^{y log_{a}(x)}  =  {x}^{y} }

\boxed{ \sf \:  {a}^{ log_{e}(b) }  =  {b}^{ log_{e}(a) } }

\boxed{ \sf \:logx + logy =  log(xy)  }

\boxed{ \sf \:logx  -  logy =  log( \dfrac{x}{y} )  }

\boxed{ \sf \:  log( {x}^{y} ) = ylogx }

Similar questions