Math, asked by ashmitsingh718p6ehon, 1 year ago

Simplify. (m+n/7)^3 (m-n/7)

Answers

Answered by Robin0071
100
Solution:-

given by:-

 {(m +  \frac{n}{7}) }^{3} (m -  \frac{n}{7} ) \\(m +  \frac{n}{7} )(m -  \frac{m}{7} ) {(m +  \frac{n}{7} )}^{2}  \\  ({m}^{2}  -   \frac{ {n}^{2} }{49} )( {m}^{2}   +  \frac{ {n}^{2} }{49}  +  \frac{2mn}{7}) \\  {m}^{4}  +  \frac{ {m}^{2} {n}^{2}  }{49}  +  \frac{2 {m}^{3}n }{7}  -  \frac{ {m}^{2}  {n}^{2} }{49}  -  \frac{ {n}^{4} }{2401}  -  \frac{2m {n}^{3} }{7}  \\ {m}^{4}  -  \frac{ {n}^{4} }{2401}  +   \frac{2 {m}^{3}n }{7}    -  \frac{2m {n}^{3} }{7}  \\  \\ i \: hope \: its \: is \: helpfull \: for \: u


Answered by JeanaShupp
24

To simplify: \left(m+\frac{n}{7}\right)^3\:\left(m-\frac{n}{7}\right)

Consider \left(m+\frac{n}{7}\right)^3\:\left(m-\frac{n}{7}\right)

=\left(m+\frac{n}{7}\right)^3m-\left(m+\frac{n}{7}\right)^3\frac{n}{7}\ \ \ [\text{By distributive law}:a\left(b-c\right)=ab-ac]\\\\ =m\left(m+\frac{n}{7}\right)^3-\frac{n}{7}\left(m+\frac{n}{7}\right)^3\\\\ =m\left(m^3+(\frac{n}{7})^3+3m^2(\dfrac{n}7)+3m(\dfrac{n}7)^2\right)-\frac{n}{7}\left((m^3+(\frac{n}{7})^3+3m^2(\dfrac{n}7)+3m(\dfrac{n}7)^2\right)\ \ \ [\because \ \ (a+b)^3=a^3+b^3+3a^2b+3ab^2]\\\\

=m^4+\dfrac{mn^3}{343}+\dfrac{3m^3n}{7}+\dfrac{3m^2n^2}{49}-\dfrac{nm^3}{7}-\dfrac{n^4}{2401}-\dfrac{3m^2n^2}{49}-\dfrac{3mn^3}{343}\\\\=m^4-\frac{n^4}{2401}-\frac{2mn^3}{343}+\frac{2m^3n}{7}

Hence, the simplified expression would be m^4-\frac{n^4}{2401}-\frac{2mn^3}{343}+\frac{2m^3n}{7}.

Similar questions