Math, asked by bubunmajumder50, 2 months ago

simplify: p/px-1 + q/qx-1 = p+q ​

Answers

Answered by mathdude500
5

\large\underline{\bold{Given \:Question - }}

\bf :\longmapsto\:Simplify :  \: \dfrac{p}{px - 1}  + \dfrac{q}{qx - 1}  = p + q

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\dfrac{p}{px - 1}  + \dfrac{q}{qx - 1}  = p + q

\rm :\longmapsto\:\dfrac{p}{px - 1}  + \dfrac{q}{qx - 1}   - p  - q = 0

\rm :\longmapsto\:\bigg(\dfrac{p}{px - 1}   - q\bigg)  + \bigg(\dfrac{q}{qx - 1}   - p\bigg) = 0

\rm :\longmapsto\:\bigg(\dfrac{p - q(px - 1)}{px - 1}\bigg)  + \bigg(\dfrac{q - p(qx - 1)}{qx - 1}\bigg) = 0

\rm :\longmapsto\:\bigg(\dfrac{p - qpx  + q}{px - 1}\bigg)  + \bigg(\dfrac{q - pqx + p}{qx - 1}\bigg) = 0

\rm :\longmapsto\:(q + p - pqx)\bigg(\dfrac{1}{px - 1}+\dfrac{1}{qx - 1}\bigg) = 0

\rm :\longmapsto\:(q + p - pqx)\bigg(\dfrac{qx - 1 + px - 1}{(px - 1)(qx - 1)}\bigg) = 0

\rm :\longmapsto\:(q + p - pqx)\bigg(\dfrac{qx+ px - 2}{(px - 1)(qx - 1)}\bigg) = 0

\rm :\implies\:p + q - pqx = 0 \:  \: or \: px + qx - 2 = 0

\rm :\implies\:p + q = pqx \:  \: or \: x(p + q)= 2

\bf\implies \:x = \dfrac{p + q}{pq} \:   \:  \: \:  \: or \:  \:  \:  \:  \: x = \dfrac{2}{p + q}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac
Similar questions