Math, asked by rajnijasutkar15, 1 day ago

simplify ...
please answer this question

Attachments:

Answers

Answered by anindyaadhikari13
6

\textsf{\large{\underline{Solution}:}}

We have to simplify the given expression.

 \rm =  \dfrac{ {x}^{a + b} \cdot {x}^{b + c} \cdot {x}^{c + a}  }{ {x}^{a} \cdot {x}^{b} \cdot {x}^{c} }

We know that:

 \rm \longrightarrow {x}^{a} \times  {x}^{b}  =  {x}^{a + b}

 \rm \longrightarrow \dfrac{ {x}^{a} }{ {x}^{b} } =  {x}^{a -  b}

Therefore, we get:

 \rm =  \dfrac{ {x}^{(a + b) + (b + c) + (c + a)}}{ {x}^{a + b + c} }

 \rm =  \dfrac{ {x}^{2(a + b+ c)}}{ {x}^{a + b + c} }

 \rm = {x}^{2(a + b+ c) - (a + b + c)}

 \rm = {x}^{a + b + c}

★ Which is our required answer.

\textsf{\large{\underline{Know More}:}}

 \rm 1. \:  \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 \rm 2. \:  \:  ({a}^{m})^{n}  =  {a}^{mn}

\rm 3. \:  \:  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 \rm4. \:  \:  {a}^{m} \times  {b}^{m} =  {(ab)}^{m}

 \rm5. \: \:   \bigg(\dfrac{a}{b} \bigg)^{m}  =  \dfrac{ {a}^{m} }{ {b}^{m} }

 \rm6. \:  \:  {a}^{ - n} =  \dfrac{1}{ {a}^{n} }

 \rm7. \:  \:  {a}^{n} =  {b}^{n} \rightarrow a = b, n \neq0

 \rm8. \:  \:  {a}^{m} =  {a}^{n} \rightarrow m = n, a \neq 1


anindyaadhikari13: Thanks for the brainliest :)
Answered by tpld1979
0

Answer:

x^(a+b+c)

Hope it helps you

Attachments:
Similar questions