Math, asked by tanmay2122, 1 year ago

Simplify
please help make anyone ..

Attachments:

Answers

Answered by DaIncredible
1

Identity used :

(a + b)(a - b) =  {a}^{2}  -  {b}^{2}

Rationalizing the Denominator of

 \frac{2 \sqrt{6} }{ \sqrt{2}  +  \sqrt{3} }

we get,

 \frac{2 \sqrt{6} }{ \sqrt{2} +  \sqrt{3}  }  \times  \frac{ \sqrt{2}  -  \sqrt{3} }{ \sqrt{2}  -  \sqrt{3} }  \\  \\  =  \frac{2 \sqrt{ {2}^{2}  \times 3}  - 2 \sqrt{ {3}^{2}  \times 2} }{ {( \sqrt{2}) }^{2} -  {( \sqrt{3} )}^{2}  }  \\  \\  =  \frac{2 \times 2 \sqrt{3} - 2 \times 3 \sqrt{2}  }{2 - 3}  \\  \\  =  \frac{4 \sqrt{3} - 6 \sqrt{2}  }{ - 1}  \\  \\  =  - 4 \sqrt{3}  + 6 \sqrt{2}  \\  \\  \bf = 6 \sqrt{2}  - 4 \sqrt{3}

Rationalizing the denominator of

 \frac{6 \sqrt{2} }{ \sqrt{6}  +  \sqrt{3} }

we get,

 \frac{6 \sqrt{2} }{ \sqrt{6}  +  \sqrt{3} }  \times  \frac{ \sqrt{6} -  \sqrt{3}  }{ \sqrt{6}  -  \sqrt{3} }  \\  \\  =  \frac{6 \sqrt{ {2}^{2} \times 3 } - 6 \sqrt{6}  }{ {( \sqrt{6} )}^{2}  -  {( \sqrt{3} )}^{2} }  \\  \\  =  \frac{6 \times 2 \sqrt{3} - 6 \sqrt{6}  }{6 - 3}  \\  \\  =  \frac{12 \sqrt{3}  - 6 \sqrt{6} }{3}  \\  \\  =  \frac{3(4 \sqrt{3}   -  2 \sqrt{6} )}{3}  \\  \\  \bf = 4 \sqrt{3}  - 2 \sqrt{6}

Rationalizing the denominator of

 \frac{8 \sqrt{3} }{ \sqrt{6}  +  \sqrt{2} }

we get,

 \frac{8 \sqrt{3} }{ \sqrt{6} +  \sqrt{2}  }  \times  \frac{ \sqrt{6}  -  \sqrt{2} }{ \sqrt{6}  -  \sqrt{2} }  \\  \\  =  \frac{8 \sqrt{ {3}^{2}  \times 2}  - 8 \sqrt{6} }{ {( \sqrt{6}) }^{2}  -  {( \sqrt{2} )}^{2} }  \\  \\  =  \frac{8 \times 3 \sqrt{2} - 8 \sqrt{6}  }{6 - 2}  \\  \\  =  \frac{24 \sqrt{2}  - 8 \sqrt{6} }{4}  \\  \\  =  \frac{4(6 \sqrt{2}  - 2 \sqrt{6}) }{4}  \\  \\  \bf = 6 \sqrt{2}  - 2 \sqrt{6}

Putting the values we get,

(6 \sqrt{2}  - 4 \sqrt{3} ) + (4 \sqrt{3}  - 2 \sqrt{6} ) \\  \:  \:  \:  \:  \:  \:  - (6 \sqrt{2}  - 2 \sqrt{6} ) \\  \\  = 6 \sqrt{2}  - 4 \sqrt{3}  + 4 \sqrt{3}  - 2 \sqrt{6}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 6 \sqrt{2}  + 2 \sqrt{6}  \\  \\  \bf = 0

Similar questions