Math, asked by ayushibarthwal5, 2 months ago

simplify




pls give answer


answer will be -⁵/³​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\dfrac{ {5}^{x + 2} - 6 \times  {5}^{x + 1}  }{13 \times  {5}^{x}  - 2 \times  {5}^{x + 1} }

We know,

\boxed{ \sf \:  {a}^{m + n} =  {a}^{m} \times  {a}^{n}}

So, using this identity, we get

\rm \:  =  \:  \: \dfrac{ {5}^{x} \times 5 \times 5 - 6 \times  {5}^{x} \times 5}{13 \times  {5}^{x}  - 2 \times  {5}^{x} \times 5 }

\rm \:  =  \:  \: \dfrac{ \red{{5}^{x} \times 5} \times 5 - 6 \times   \red{{5}^{x} \times 5}}{13 \times   \blue{{5}^{x}}  - 2 \times  \blue{ {5}^{x}} \times 5 }

Now, take common from numerator and denominator, we get

\rm \:  =  \:  \: \dfrac{ \red{5 \times  {5}^{x}} \: (5 \:  -  \: 6)}{ \blue{{5}^{x}}(13 - 2 \times 5)}

\rm \:  =  \:  \: \dfrac{ 5\: ( - 1)}{(13 - 10)}

\rm \:  =  \:  \:  -  \: \dfrac{5}{3}

Hence,

\bf :\longmapsto\:\dfrac{ {5}^{x + 2} - 6 \times  {5}^{x + 1}  }{13 \times  {5}^{x}  - 2 \times  {5}^{x + 1} }  =  -  \: \dfrac{5}{3}

Additional Information :-

\boxed{ \sf \:  {a}^{m  -  n} =  {a}^{m} \div   {a}^{n}}

\boxed{ \sf \:  { ({a}^{n}) }^{m} =  {a}^{nm}}

\boxed{ \sf \:  {{a}^{0}} =  1}

 \boxed{ \sf{ {a}^{0} = 1}}

Similar questions