Math, asked by kiki9876, 1 year ago

simplify
plz give answer

Attachments:

Answers

Answered by Anonymous
48

\mathfrak{Question:}

\large\tt{\sqrt[5]{x^4\sqrt[4]{x^3\sqrt[3]{x^2\sqrt{x}}}}.}

\mathfrak{Answer:}

\bold{=x^{\frac{119}{120}}.}

\mathfrak{Step-by-Step\:Explanation:}

\large\tt{=\sqrt[5]{x^4\sqrt[4]{x^3\sqrt[3]{x^2\sqrt{x}}}}}\\\\\\\large\tt{=\sqrt[5]{x^4\sqrt[4]{x^3\sqrt[3]{x^2\times x^{\frac{1}{2}}}}}}\\\\\\\large\tt{=\sqrt[5]{x^4\sqrt[4]{x^3\sqrt[3]{ x^{2+\frac{1}{2}}}}}}\\\\\\\large\tt{=\sqrt[5]{x^4\sqrt[4]{x^3\sqrt[3]{ x^{\frac{5}{2}}}}}}\\\\\\\large\tt{=\sqrt[5]{x^4\sqrt[4]{x^3\times{x^{\frac{5}{2\times3}}}}}}\\\\\\\large\tt{=\sqrt[5]{x^4\sqrt[4]{x^3\times{x^{\frac{5}{6}}}}}}\\\\\\\large\tt{=\sqrt[5]{x^4\sqrt[4]{{x^{3+\frac{5}{6}}}}}}\\

\large\tt{=\sqrt[5]{x^4\sqrt[4]{{x^{\frac{23}{6}}}}}}\\\\\\\large\tt{=\sqrt[5]{x^4\times{{x^{\frac{23}{6\times 4}}}}}}\\\\\\\large\tt{=\sqrt[5]{{{x^{4+\frac{23}{24}}}}}}\\\\\\\large\tt{=\sqrt[5]{{{x^{\frac{119}{24}}}}}}\\\\\\\large\tt{={{{x^{\frac{119}{24\times 5}}}}}}\\\\\\\tt{=x^{\frac{119}{120}}}.

\boxed{\boxed{\bold{\large\tt{\sqrt[5]{x^4\sqrt[4]{x^3\sqrt[3]{x^2\sqrt{x}}}}=x^{\frac{119}{120}}}.}}}

Answered by Anonymous
80
Solution :

 = > \sqrt[5]{x^{4} \sqrt[4]{x ^{3} \sqrt[3]{x^{2} \sqrt{x} } } } = \sqrt[5]{x^{4} \sqrt[4]{x ^{3} \sqrt[3]{x^{2} \times x \frac{1}{2} } } }

 = > \sqrt[5]{x^{4} \sqrt[4]{x^{3} \sqrt[3]{x ^{2} \times x \frac{1}{2} }} } = \sqrt[5]{x^{4} \sqrt[4]{x^{3} \times x \frac{5}{2 \times 3} } }

 = > \sqrt[5]{x^{4} \sqrt[4]{x ^{3} \times \: x \frac{5}{6} } } = \sqrt[5]{x^{4} \sqrt[4]{x \frac{23}{6} } }

 = > \sqrt[5]{x^{4} \times x \frac{23}{6 \times 4} } = \sqrt[5]{x^{4} + \frac{23}{24} }

 = > \sqrt[5]{x \frac{119}{24} } = x \frac{119}{24 \times 5}

 = > x \frac{119}{120}

Hence ,

 = > \sqrt[5]{x^{4} \sqrt[4]{x^{3} \sqrt[3]{x^{2} \sqrt{x } } } } = x \frac{119}{120}
Similar questions