Simplify (pqr) (pq³r) (p²r). Also, verify the result when p= -1 q= 2 r= -2
Answers
GIVEN :-
- (pqr) (pq³r) (p²r)
TO FIND :-
- The value of (pqr) (pq³r) (p²r)
- Verify the results for p = -1 ,q = 2 ,r = -2
SOLUTION :-
⇒(pqr) (pq³r) (p²r)
⇒ [(pqr) (pq³r)] (p²r)
⇒(p²q⁴r²) (p²r)
⇒p⁴q⁴r³ = R.H.S
VERIFICATION :-
L.H.S = (pqr) (pq³r) (p²r)
= [(-1) × 2 × (-2)] [(-1) × (2)³ × (-2)] [(-1)² × (-2)]
= [-2 × -2 ] [-1 × -16] [ 1 × -2]
= 4 × 16 × (-2)
= -128 ----------------- (1)
R.H.S = p⁴q⁴r³
= (-1)⁴ × (2)⁴ × (-2)³
= 1 × 16 × (-8)
= -128 -------------------(2)
From equation (1) and (2)
L.H.S = R.H.S
HENCE VERIFIED
✴ Simplification :-
(pqr) (pq³r) (p²r)
⇒(pqr) (pq³r) (p²r)
⇒ {(pqr)×(pq³r)}(p²r)
⇒(p²q⁴r²) (p²r)
⇒p⁴q⁴r³
▶ VERIFICATION :-
Left Hand Side
(pqr) (pq³r) (p²r)
➠ [(-1) × 2 × (-2)] [(-1) × (2)³ × (-2)] [(-1)² × (-2)]
➠ [-2 × -2 ] [-1 × -16] [ 1 × -2]
➠ 4 × 16 × (-2)
➠ 64 × -2
➠ -128
Right Hand Side
p⁴q⁴r³
➠ (-1)⁴ × (2)⁴ × (-2)³
➠ (-1 × -1 × -1 × -1 ) × (2×2×2×2) × (-2×-2×-2)
➠ 1 × 16 × (-8)
➠ 16 × -8
➠ -128
________________________________