Math, asked by sy160170, 1 year ago

Simplify
Q1. (√3-√3)^2
Find the value of a and b
√3+1/√3-1=a+b√3

Answers

Answered by MonarkSingh
3
\huge\boxed{\texttt{\fcolorbox{Red}{aqua}{Hello Friend}}}

 \frac{ \sqrt{3}  + 1}{ \sqrt{3}  - 1} \\  =  \frac{ \sqrt{3} + 1 }{ \sqrt{3}  - 1}  \times  \frac{ \sqrt{3} - 1 }{ \sqrt{3}  - 1}  \\  =  \frac{3 -  \sqrt{3}  +  \sqrt{3}  - 1}{( \sqrt{3}) {}^{2}  - 1 {}^{2}  }  \\  =  \frac{2}{3 - 1}  \\  = 1 \\  = a + b \sqrt{3}  \\ on \: compaing \\ a = 1 \:  \: and \: b = 0


\huge{\red{\boxed{\boxed{\boxed{\boxed{\boxed{\underline{\underline{Hope \:it\: helps\: you}}}}}}}}}

sy160170: Your answer is wrong
sy160170: Plz give me answer of simplify
MonarkSingh: simplify is 0 as root 3- root 3=0
MonarkSingh: and square of 0 is 0
Answered by MonarkSinghD
0
Here is your answer
 =  \frac{ \sqrt{3} + 1 }{ \sqrt{3}  - 1}  \times  \frac{ \sqrt{3} + 1 }{ \sqrt{3}  + 1}  \\  =  \frac{3 +  \sqrt{3}  +  \sqrt{3} + 1 }{3 - 1}  \\  =  \frac{4 + 2 \sqrt{3} }{2}  \\  =  \frac{4}{2}  +  \frac{2 \sqrt{3} }{2}  \\  = 2 +  \sqrt{3}  \\  = a + b \sqrt{3}  \\ a = 2 \\ b = 1
Hope it helps
Similar questions