Math, asked by rajc9554, 1 year ago

Simplify quantity 1 minus sine squared theta divided by cosine squared theta. .

Answers

Answered by kumarjha183
1
(1 - sin^2 ¤)/cos^2¤
=(1/cos^2 ¤) - (sin^2¤/cos^2¤)
=(sec^2¤) - (tan^2¤)
=1 [1+ tan^2¤=sec^2¤]
Answered by tardymanchester
0

Answer:

\frac{1-sin^2\theta}{cos^2\theta}=1

Step-by-step explanation:

Given : Quantity 1 minus sine squared theta divided by cosine squared theta.

or \frac{1-sin^2\theta}{cos^2\theta}

To simplify: The given quantity

Solution :

Step 1- Write the given quantity

\frac{1-sin^2\theta}{cos^2\theta}

Step 2- Separate the denominator to both the numerators

\frac{1}{cos^2\theta}-\frac{sin^2\theta}{cos^2\theta}

Step 3- Simplify the form

sec^2\theta-tan^2\theta

Step 4- Applying the property of trigonometry [1+tan^2\theta = sec^2\theta]

sec^2\theta-tan^2\theta=1

Therefore, \frac{1-sin^2\theta}{cos^2\theta}=1

Similar questions