simplify root of 3sqare +root of 4sqare
Answers
Answered by
7
Answer:
Let's simplify \sqrt{75}
75
square root of, 75, end square root by removing all perfect squares from inside the square root.
We start by factoring 757575, looking for a perfect square:
75=5\times5\times3=\blueD{5^2}\times375=5×5×3=5
2
×375, equals, 5, times, 5, times, 3, equals, start color #11accd, 5, squared, end color #11accd, times, 3.
We found one! This allows us to simplify the radical:
\begin{aligned} \sqrt{75}&=\sqrt{\blueD{5^2}\cdot3} \\\\ &=\sqrt{\blueD{5^2}} \cdot \sqrt{{3}} \\\\ &=5\cdot \sqrt{3} \end{aligned}
75
=
5
2
⋅3
=
5
2
⋅
3
=5⋅
3
So \sqrt{75}=5\sqrt{3}
75
=5
3
square root of, 75, end square root, equals, 5, square root of, 3, end square root.
Similar questions
Math,
24 days ago
English,
24 days ago
English,
24 days ago
India Languages,
1 month ago
English,
1 month ago
Computer Science,
8 months ago