Math, asked by sukhnoorkaur5095, 9 months ago

Simplify:
root x square + y square minus y upon x minus root x square minus y square divided by root x square minus y square + X upon root x square + y square + y

Answers

Answered by MaheswariS
5

\textbf{Given:}

\mathsf{\dfrac{\dfrac{\sqrt{x^2+y^2}-y}{x-\sqrt{x^2-y^2}}}{\dfrac{\sqrt{x^2-y^2}+x}{\sqrt{x^2+y^2}+y}}}

\textbf{To simplify:}

\mathsf{\dfrac{\dfrac{\sqrt{x^2+y^2}-y}{x-\sqrt{x^2-y^2}}}{\dfrac{\sqrt{x^2-y^2}+x}{\sqrt{x^2+y^2}+y}}}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{\dfrac{\dfrac{\sqrt{x^2+y^2}-y}{x-\sqrt{x^2-y^2}}}{\dfrac{\sqrt{x^2-y^2}+x}{\sqrt{x^2+y^2}+y}}}

\textsf{This can be written as}

\mathsf{=\dfrac{\sqrt{x^2+y^2}-y}{x-\sqrt{x^2-y^2}}{\times}\dfrac{\sqrt{x^2+y^2}+y}{\sqrt{x^2-y^2}+x}}

\mathsf{=\dfrac{\sqrt{x^2+y^2}-y}{x-\sqrt{x^2-y^2}}{\times}\dfrac{\sqrt{x^2+y^2}+y}{x+\sqrt{x^2-y^2}}}

\textsf{Using the identity,}

\boxed{\mathsf{(a-b)(a+b)=a^2-b^2}}

\mathsf{=\dfrac{(\sqrt{x^2+y^2})^2-y^2}{x^2-(\sqrt{x^2-y^2})^2}}

\mathsf{=\dfrac{x^2+y^2-y^2}{x^2-(x^2-y^2)}}

\mathsf{=\dfrac{x^2+y^2-y^2}{x^2-x^2+y^2}}

\mathsf{=\dfrac{x^2}{y^2}}

\implies\boxed{\mathsf{\dfrac{\dfrac{\sqrt{x^2+y^2}-y}{x-\sqrt{x^2-y^2}}}{\dfrac{\sqrt{x^2-y^2}+x}{\sqrt{x^2+y^2}+y}}=\dfrac{x^2}{y^2}}}

\textbf{Find more:}

Simplify 73*73*73+27*27*27/73*73-73*27+27*27

https://brainly.in/question/2079320

Similar questions