Math, asked by chandasingh18992, 1 month ago

simplify (root5-root2)(root2-root3)​

Answers

Answered by ajr111
9

Answer:

\large{\text{$\mathrm{\sqrt{6} +\sqrt{10}-2 -\sqrt{15} }$}}

Step-by-step explanation:

Given Question :

\mathrm{(\sqrt{5}- \sqrt{2})( \sqrt{2}- \sqrt{3} )}

To find :

Simplification the given expression

Solution :

\longmapsto \mathrm{(\sqrt{5}- \sqrt{2})( \sqrt{2}- \sqrt{3} )}

\implies \mathrm{\big(\sqrt{5}( \sqrt{2}- \sqrt{3} )- \sqrt{2}( \sqrt{2}- \sqrt{3} )\big)}

\implies \mathrm{(\sqrt{10}- \sqrt{15}- \sqrt{4} +\sqrt{6} )}

\implies \mathrm{\sqrt{6} +\sqrt{10}-2 -\sqrt{15} }

\therefore \underline{\boxed{\mathbf{(\sqrt{5}- \sqrt{2})( \sqrt{2}- \sqrt{3} )} =\mathbf{\sqrt{6} +\sqrt{10}-2 -\sqrt{15} } }}

Hope it helps!!

Answered by GraceS
8

\sf\huge\bold{Answer:}

Given :

\sf =  (\sqrt{5}  -  \sqrt{2} )( \sqrt{2}  -  \sqrt{3} )

To find :

Value of above expression on simplification

Solution :

\sf = ( \sqrt{5}  -  \sqrt{2} )( \sqrt{2}  -  \sqrt{3} )

\sf =  \sqrt{5} ( \sqrt{2}  -  \sqrt{3} ) -  \sqrt{2} ( \sqrt{2}  -  \sqrt{3} ) \\

\sf =  \sqrt{5 \times 2}  -  \sqrt{5 \times 3}  -  \sqrt{2 \times 2}  - ( -  \sqrt{2 \times 3} ) \\

\sf =  \sqrt{10}  -  \sqrt{15}  -  \sqrt{4}  +  \sqrt{6}

\sf =  \sqrt{10}  -  \sqrt{15}  -   \sqrt{{2}^{2} } +  \sqrt{6}

\sf =  \sqrt{10}  -  \sqrt{15}  - 2 +  \sqrt{6}

\sf =  \sqrt{6}  +  \sqrt{10}  -  \sqrt{15}  - 2

\sf\huge\purple{ :⟶  (\sqrt{5}  -  \sqrt{2} )( \sqrt{2}  -  \sqrt{3} )}

\sf\huge\purple{ =  \sqrt{6}  +  \sqrt{10}  -  \sqrt{15}  - 2 }

Similar questions