simplify: (secA+tanA)(1-sinA)
Answers
Answered by
2
(secA+tanA)(1-sinA)
=>secA(1-sinA)+tanA(1-sinA)
=>secA-secAsinA+tanA-tanAsinA
=>secA - sinA/cosA +tanA - sinA/cosA×sinA
=>secA - tanA + tanA - sin²A/cosA
=>secA - sin²A/cosA
=>secA - sin²AsecA
=>secA(1-sin²A)
=>secA×cos²A
=>cosA
So, (secA+tanA)(1-sinA) = cosA
Cheers!
Answered by
6
To Simplify
→ (secA + tanA)(1 - sinA)
Solution
→ (secA + tanA)(1 - sinA)
→ (1/cosA + sinA/cosA)(1 - sinA)
→ (1 + sinA)/cosA × (1 - sinA)
→ (1 + sinA)(1 - sinA)/cosA
→ (1² - sin²A)/cosA
→ (1 - sin²A)/cosA
→ cos²A/cosA
→ cosA
Answer: cosA
______________________________
Identities used
- (a + b)(a - b) = a² - b²
- sec∅ = 1/cos∅
- tan∅ = sin∅/cos∅
- 1 - sin²∅ = cos²∅
Similar questions