Math, asked by deepikabiswas476, 1 month ago

Simplify Simplify Simplify​

Attachments:

Answers

Answered by bd21454
1

Step-by-step explanation:

1) 2√50 + 3√32 + 4√18

= 2√ 25×2 + 3√16×2 + 4√9×2

= 2×5√2 + 3×4√2 + 4×3√2

= 10√2 + 12√2 + 12√2

= √2( 10+12+12). [ √2 is common to all]

= 34√2

Answered by ciola
1

Step-by-step explanation:

(i) \:  \:  \: 2 \sqrt{50}  + 3 \sqrt{32}  + 4 \sqrt{18}  \\  = 2 \sqrt{25 \times 2}  + 3 \sqrt{16 \times 2}  + 4 \sqrt{9 \times 2}  \\  = 2 \sqrt{ {5}^{2} \times 2 }  + 3 \sqrt{ {4}^{2}  \times 2}  + 4 \sqrt{ {3}^{2}  \times 2}  \\  = (2 \times 5) \sqrt{2}  + (3 \times 4) \sqrt{2}  + (4 \times 3) \sqrt{2}  \\  = 10 \sqrt{2}  + 12 \sqrt{2}  + 12 \sqrt{2}  \\  = (10 + 12 + 12) \sqrt{2}  \\  = \underline{ \underline{ 34 \sqrt{2} }} \\  \\ (ii) \:  \:  \:  \sqrt[4]{16}  - 6  \sqrt[3]{343}  + 18 \times  \sqrt[5]{243}  -  \sqrt{196} \\ = \sqrt[4]{16}  - (6  \sqrt[3]{343} ) + (18 \times  \sqrt[5]{243})  -  \sqrt{196} \\ = \sqrt[4]{{2}^{4}}  - (6 \times \sqrt[3]{{7}^{3}} ) + (18 \times  \sqrt[5]{{3}^{5}})  -  \sqrt{{14}^{2}} \\  = 2 - (6 \times 7) + (18 \times 3) - 14 \\ = 2 - 42 + 54 - 14 \\  = \underline{ \underline{ 0}} \\  \\ (iii) \:  \:  \:  \sqrt[4]{81} - 8 \sqrt[3]{216}  + 15 \sqrt[5]{32}  +  \sqrt{225} \\ = \sqrt[4]{{3}^{4}} - 8 \sqrt[3]{{6}^{3}}  + 15 \sqrt[5]{{2}^{5}}  +  \sqrt{{15}^{2}} \\  = 3 - (8 \times 6) + (15 \times 2) + 15 \\  = 3 - 48 + 30 + 15 \\  = \underline{ \underline{ 0}}

Similar questions