Simplify sin 1140° cos 390° - cos 780° sin 750°
Answers
Answered by
36
we know,
sin(n × 360° + x) = sinx
cos(n × 360° + x) = cosx
sin1140° = sin(3 × 360° + 60°) = sin60°
cos390° = cos(1 × 360° + 30°) = cos30°
cos780° = cos(2 × 360° + 60°) = cos60°
sin750° = cos(2 × 360° + 30°) = sin30°
now, sin 1140° cos 390° - cos 780° sin 750° = sin60° cos30° - cos60° sin30°
use formula, sinA.cosB - cosA.sinB = sin(A - B)
so, sin60° cos30° - cos60° sin30° = sin(60° - 30°) = sin30° = 1/2
hence answer is 1/2
sin(n × 360° + x) = sinx
cos(n × 360° + x) = cosx
sin1140° = sin(3 × 360° + 60°) = sin60°
cos390° = cos(1 × 360° + 30°) = cos30°
cos780° = cos(2 × 360° + 60°) = cos60°
sin750° = cos(2 × 360° + 30°) = sin30°
now, sin 1140° cos 390° - cos 780° sin 750° = sin60° cos30° - cos60° sin30°
use formula, sinA.cosB - cosA.sinB = sin(A - B)
so, sin60° cos30° - cos60° sin30° = sin(60° - 30°) = sin30° = 1/2
hence answer is 1/2
Answered by
17
HELLO DEAR,
we know,
sin(n360° + x) = sinx
cos(n360° + x) = cosx
sin1140° = sin(3 × 360° + 60°) = sin60°
cos390° = cos(1 × 360° + 30°) = cos30°
cos780° = cos(2 × 360° + 60°) = cos60°
sin750° = cos(2 × 360° + 30°) = sin30°
now,
sin 1140° cos 390° - cos 780° sin 750° = sin60° cos30° - cos60° sin30°
[as, sinA.cosB - cosA.sinB = sin(A - B) ]
so, sin60° cos30° - cos60° sin30° = sin(60° - 30°) = sin30° = 1/2
I HOPE IT'S HELP YOU DEAR,
THANKS
we know,
sin(n360° + x) = sinx
cos(n360° + x) = cosx
sin1140° = sin(3 × 360° + 60°) = sin60°
cos390° = cos(1 × 360° + 30°) = cos30°
cos780° = cos(2 × 360° + 60°) = cos60°
sin750° = cos(2 × 360° + 30°) = sin30°
now,
sin 1140° cos 390° - cos 780° sin 750° = sin60° cos30° - cos60° sin30°
[as, sinA.cosB - cosA.sinB = sin(A - B) ]
so, sin60° cos30° - cos60° sin30° = sin(60° - 30°) = sin30° = 1/2
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions