Math, asked by khushisps, 1 year ago

simplify: sin^3+cos^3/Sin+cos

Answers

Answered by MarkAsBrainliest
5
\textbf{Answer -}

Now,

(sin³θ + cos³θ)/(sinθ + cosθ)

= {(sinθ + cosθ) (sin²θ + cos²θ - sinθ cosθ)}/(sinθ + cosθ),
using the identity -
a³ + b³ = (a + b) (a² + b² - ab)

= sin²θ + cos²θ - sinθ cosθ

= 1 - sinθ cosθ,
since sin²θ + cos²θ = 1

#\textbf{MarkAsBrainliest}
Answered by abhi569
0
Sin³ + cos³/sin + cos

×××××××××××××××××××××××××
We know,
a³ + b³ = (a+b) (a²-ab+b²)
×××××××××××××××××××××××××

 \frac{( \sin + \cos)( { \sin}^{2} - \sin \cos + { \cos }^{2} ) }{ \sin + \cos} \\ \\ { \sin }^{2} + { \cos }^{2} - \sin \cos

×××××××××××××××××××××

We know, sin²∅ + cos²∅ = 1

Then,

1 - sin cos

×××××××××××××××××××××




I hope this will help you

(-:
Similar questions
Math, 1 year ago