Math, asked by khushirana20012003, 1 year ago

Simplify (sin^3A+cos^3A)/(sinA+cosA. )+sinA cosA

Answers

Answered by originaljustice
10
here is the answer.........
Attachments:
Answered by steffiaspinno
0

The answer is 1.

Step-by-step explanation:

To simplify: \frac{(sin^3A+cos^3A)}{(sinA+cosA)}+sinA cosA

Formula to be used:

  • (a+b)^3 = a^3 +b^3 + 3ab(a+b)
  • (a+b)^2 = a^2 +b^2 + 2ab
  • sin^2A+cos^2A =1

Solution:

\frac{(sin^3A+cos^3A)}{(sinA+cosA)}+sinA cosA

\frac{(sinA + cosA)^3 - 3sinAcosA(sinA+cosA)}{(sinA+cosA)}+sinA cosA

Taking (sinA + cosA) common

(sinA + cosA)^2 - 3sinAcosA+sinA cosA

(sinA + cosA)^2 - 2sinAcosA

sin^2A + cos^2A + 2sinaAcosA - 2sinAcosA

sin^2A + cos^2A

1

Similar questions