simplify sin (∅+π/6) - sin(∅-π/6)
Answers
Answered by
0
Step-by-step explanation:
using expansion formulae
sin(theta + 30⁰) - sin(theta - 30⁰)
= 2cos(thetha)sin30⁰
= cos(theta)
Answered by
2
Solution :-
Given that
sin (∅+π/6) - sin(∅-π/6)
We know that
π = 180°
π/6 = 180°/6 = 30°
Now,
Given expression becomes
sin(∅+30)°-sin(∅-30)°
We know that
sin (A+B) = sin A cos B + cos A sin B
sin (A-B) = sin A cos B - cos A sin B
Where, A = ∅ and B = 30°
Now,
sin(∅+30)°-sin(∅-30)°
= (sin ∅ cos 30° + cos ∅ sin 30°) -
(sin ∅ cos 30° - cos ∅ sin 30° )
= sin ∅ cos 30° + cos ∅ sin 30° -
sin ∅ cos 30° + cos ∅ sin 30°
= cos ∅ sin 30° + cos ∅ sin 30°
= 2 cos ∅ sin 30°
= 2 cos ∅ (1/2)
= (2/2) cos ∅
= (1) cos ∅
= cos ∅
Answer :-
sin (∅+π/6) - sin(∅-π/6) = cos ∅
Used formulae:-
♦ sin (A+B) = sin A cos B + cos A sin B
♦ sin (A-B) = sin A cos B - cos A sin B
♦ π = 180°
♦ sin 30° = 1/2
Similar questions