Math, asked by arjunsingh530, 1 year ago

. Simplify sin cube theta + cos square theta upon sin theta + cos theta

Answers

Answered by mysticd
3
Hi ,

Here I used A instead of theta.


( sin³ A + cos³ A )/( sinA + cosA )

= (sinA+cosA)[ sin² A + sinAcosA+cos²A]/(sinA+ cosA )

= ( sin²A + cos² A + sinAcosA )

= 1 + SinA cosA

I hope this helps you.

: )
Answered by abhi569
2

 \frac{ \sin ^{3} ( \alpha ) +  \cos ^{3} ( \alpha )  }{  \sin( \alpha )  + \cos ( \alpha ) }  \\  \\  \frac{( \sin( \alpha )  +  \cos( \alpha ) )( { \sin( \alpha ) }^{2}  +  { \cos( \alpha ) }^{2} +  \sin( \alpha )   \cos( \alpha ) )}{ \sin( \alpha ) +  \cos( \alpha )  }  \\  \\  \sin^{2} ( \alpha )  +  { \cos^{2} ( \alpha ) } +  \sin( \alpha )  \cos( \alpha )  \\  \\ 1 +  \sin( \alpha )  \cos( \alpha )
Similar questions