simplify \sqrt { 7 - \sqrt { 13 } } - \sqrt { 7 + \sqrt { 13 } }
Answers
Concept:
The square root is a factor of a number that, when multiplied by itself, gives the original number.
Given:
√(7 - √3) - √(7 + √3)
Find:
We are asked to simplify √(7 - √3) - √(7 + √3).
Solution:
We have,
√(7 - √3) - √(7 + √3)
Now,
Using the identity,
i.e.
(a + b)² = a² + b² + 2ab
So,
Squaring the given term,
i.e.
[√(7 - √3) - √(7 + √3)]²
Now,
[√(7 - √3) ]² + [√(7 + √3)]² - 2 × √(7 - √3) × √(7 + √3)
On solving we get,
7 - √3 + 7 + √3 - 2 × √46
Now,
Cancelling out √3,
We get,
14 - 2√46
Hence, the simplified form of √(7 - √3) - √(7 + √3) is 14 - 2√46.
#SPJ1
Answer:
2
Step-by-step explanation:
Given:- The given expression √(7 - √13 ) - √(7 + √13 ) .
To Find:- Value of the above expression.
Solution:-
(√(7 - √13 ))-(√(7 + √13 ))
Using the formula (a - b)² = a² + b² - 2ab
= ((√(7 - √13 ))-(√(7 + √13 )))²
= (√(7 - √13 ) )² + (√(7 + √13 ) )² - 2(√(7 - √13) )(√(7 + √13) )
= 7 - √13 + 7 + √13 - 2(√(7² - √13² ) )
= 14 - 2(√(49 - 13) )
= 14 - 2√36
= 14 - 2 × 6
= 14 - 12
= 2
Therefore, the value of expression √(7 - √13 ) - √(7 + √13 ) is 2.
#SPJ2
https://brainly.in/question/40538017
https://brainly.in/question/2743476