Math, asked by flamekizer, 10 months ago

Simplify
(Step by Step)

Attachments:

Answers

Answered by MisterIncredible
9

Answer :

Given :

\longrightarrow{\frac{6}{2\sqrt {3} - \sqrt {6}} + \frac{\sqrt{6}}{\sqrt{3} + \sqrt{2}} - {\frac{4\sqrt{3}}{\sqrt{6} - \sqrt{2}}}}

Required to find :

  1. Simplification of the given numbers.

Solution :

Let's Slove this question by splitting it into 3 parts .

1st part :

\longrightarrow{ \frac{6}{2\sqrt {3} - \sqrt {6}}}

Rationalising factor

\boxed{2\sqrt {3} - \sqrt {6}}

Hence; Now Rationalise the denominator.

\longrightarrow{ \frac{6}{2\sqrt {3} - \sqrt {6}} \times \frac{2\sqrt {3}+\sqrt {6}}{2\sqrt {3} + \sqrt {6}}}

\longrightarrow{ \frac{6 (2\sqrt {3} - \sqrt {6})}{{(2\sqrt {3})}^{2} - {(\sqrt {6})}^{2}}}

\longrightarrow{ \frac{6 (2\sqrt {3} + 6 \sqrt {6})}{12 - 6}}

\longrightarrow{ \frac{6 (2\sqrt {3} + 6 \sqrt {6})}{6}}

6 gets cancelled in numerator and denominator.

\Rightarrow{ \frac{2\sqrt {3} +  \sqrt {6}}{1}}

Hence,

\implies{2\sqrt {3} + \sqrt {6}}

2nd part :

\longrightarrow{ \frac{\sqrt {6}}{\sqrt {3} + \sqrt {2}}}

Rationalising factor :

\boxed{ \sqrt {3} -  \sqrt {2}}

Hence, Now Rationalise the denominator.

\longrightarrow{ \frac{\sqrt {6}}{\sqrt {3} + \sqrt {2}} \times \frac{\sqrt {3} - \sqrt {2}}{\sqrt {3} - \sqrt {2}}}

\longrightarrow{ \frac{\sqrt{6}(\sqrt {3} - \sqrt {2})}{{(\sqrt {3})}^{2} - {(\sqrt {2}}^{2}}}

\longrightarrow{\frac{\sqrt {18} - \sqrt {12}}{3 - 2}}

\longrightarrow{\sqrt {9 \times 2} - \sqrt {4 \times 3}}

Hence;

\implies{3\sqrt {2} - 2\sqrt {3}}

3rd part :

\longrightarrow{\frac{4\sqrt {3}}{\sqrt {6} - \sqrt {2}}}

Rationalising factor :

\boxed{\sqrt  {6} + \sqrt  {2} }

Hence Now; Rationalise the denominator .

\longrightarrow{\frac{4\sqrt {3}}{\sqrt {6} - \sqrt {2}} \times \frac{\sqrt {6} + \sqrt {2}}{\sqrt {6} + \sqrt {2}}}

\longrightarrow{\frac{4\sqrt {3} ( \sqrt {6} + \sqrt {2})}{{(\sqrt {6})}^{2} - {(\sqrt {2})}^{2}}}

\longrightarrow{\frac{4 \sqrt {18} + 4 \sqrt {6}}{6 - 2}}

\longrightarrow{\frac{4 \sqrt {18} + 4 \sqrt {6}}{4}}

\longrightarrow{\frac{4 (\sqrt {18} +  \sqrt {6})}{4}}

\longrightarrow{\frac{\cancel {4}(\sqrt{18 } + \sqrt {6})}{\cancel {4}}}

( 4 gets cancelled in both numerator and denominator. )

\Rightarrow{\sqrt {9 \times 2} + \sqrt {6}}

Hence;

\implies{3 \sqrt  {2} + \sqrt  {6}}

According to the problem;

Now integrate the 3 parts.

\small{\Rightarrow{2\sqrt  {3}+\sqrt {6}+3\sqrt {2}-2\sqrt {3} - ( 3\sqrt {2} + \sqrt  {6})}}

\small{\Rightarrow{2\sqrt  {3}+\sqrt {6}+3\sqrt {2}-2\sqrt {3} - 3\sqrt {2} - \sqrt  {6}}}

\small{\Rightarrow{3\sqrt {2} - 3\sqrt {2} +2\sqrt {3} - 2\sqrt {3} + 1\sqrt {6} - 1\sqrt {6}}}

\small{\Rightarrow{\cancel{3\sqrt {2} - 3\sqrt {2} +12\sqrt {3} - 2\sqrt {3} + 6\sqrt {6} - 1\sqrt {6}}}}

\boxed{ All \:numbers\: get\: cancelled \: due \:to\:opposite\:signs}

\implies{0}

\boxed{\therefore{value\:is\:0}}

Answered by Anonymous
11

Question :

Simplify ,

 \frac{6}{2 \sqrt{3} -  \sqrt{6} }  +  \frac{ \sqrt{6} }{ \sqrt{3} +  \sqrt{2}  }  -  \frac{4 \sqrt{3} }{ \sqrt{6} -  \sqrt{2}  }

Solution :

\frac{6}{2 \sqrt{3} -  \sqrt{6} }  +  \frac{ \sqrt{6} }{ \sqrt{3} +  \sqrt{2}  }  -  \frac{4 \sqrt{3} }{ \sqrt{6} -  \sqrt{2}  }

Now taking part 1 and rationalize the denominator,

 \frac{6}{2 \sqrt{3}  -  \sqrt{6} }   \\  \\ =  \frac{6(2 \sqrt{3} +  \sqrt{6} ) }{(2 \sqrt{3} -  \sqrt{6})(2 \sqrt{3}   +  \sqrt{6} ) }  \\  \\  =   \frac{6(2 \sqrt{3}  +  \sqrt{6} )}{ ({2 \sqrt{3}) }^{2} -  { (\sqrt{6}) }^{2}  }    \\  \\  =  \frac{6(2 \sqrt{3}  +  \sqrt{6} )}{12 - 6}  \\  \\  =  \frac{6(2 \sqrt{3}  +  \sqrt{6} )}{6}  \\  \\  = 2 \sqrt{3}  +  \sqrt{6}

Now taking 2nd part and rationalize the denominator,

 \frac{ \sqrt{6} }{ \sqrt{3} +  \sqrt{2}  }  \\  \\  =  \frac{ \sqrt{6}( \sqrt{3}  -  \sqrt{2}  )}{ (\sqrt{3} +  \sqrt{2}  )( \sqrt{3} -  \sqrt{2)}  }  \\  \\  =  \frac{ \sqrt{18}  -  \sqrt{12} }{ {( \sqrt{3}) }^{2} -  { (\sqrt{2}) }^{2} }  \\  \\  =  \frac{3 \sqrt{2}  - 2 \sqrt{3} }{3 - 2}  \\  \\  = 3 \sqrt{2}  - 2 \sqrt{3}

Now taking 3rd part and rationalize the denominator,

 \frac{4 \sqrt{3} }{ \sqrt{6} -  \sqrt{2}  } \\  \\  =  \frac{4 \sqrt{3} ( \sqrt{6}  +  \sqrt{2} )}{( \sqrt{6} -  \sqrt{2} )( \sqrt{6}   +  \sqrt{2}) }   \\  \\  =  \frac{4 \sqrt{3} ( \sqrt{6}  +  \sqrt{2} )}{ {( \sqrt{6} )}^{2}  -  {( \sqrt{2}) }^{2} }  \\  \\  =  \frac{4 \sqrt{3} ( \sqrt{6}  +  \sqrt{2} )}{6 - 2}  \\  \\  =  \frac{4 \sqrt{3}( \sqrt{6}  +  \sqrt{2} ) }{4}  \\  \\  =  \sqrt{18}  +  \sqrt{6}  \\  \\  = 3 \sqrt{2}  +  \sqrt{6}

Now integrate the 3 parts :

(2 \sqrt{3}  +  \sqrt{6} ) + (3 \sqrt{2}  - 2 \sqrt{3} ) - (3 \sqrt{2}  +  \sqrt{6} ) \\  \\  = 2 \sqrt{3}  +  \sqrt{6}  + 3 \sqrt{2}  - 2 \sqrt{3}  - 3 \sqrt{2}  -  \sqrt{6}  \\  \\  = 0

Hence , value is 0.

_________________________


BrainlyRaaz: Perfect ✔️
Similar questions