Math, asked by manangoel3306, 2 months ago

Simplify tan 1/2[sin^-1 2x/1+x² + cos ^-1 1-y²/1+y²]​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:tan \: \dfrac{1}{2} \bigg( {sin}^{ - 1} \dfrac{2x}{1 +  {x}^{2} }  +  {cos}^{ - 1}\dfrac{1 -  {y}^{2} }{1 +  {y}^{2} }  \bigg)

To simply this, we substitute x = tanp and y = tanq

\rm \:  =  \:  \: \:tan \: \dfrac{1}{2}\bigg( {sin}^{ - 1} \dfrac{2tanp}{1 +  {tan}^{2} p}  +  {cos}^{ - 1}\dfrac{1 -  {tan}^{2}q }{1 +  {tan}^{2} q}  \bigg)

We know,

\underbrace{\boxed{ \tt{sin2x =  \frac{2tanx}{1 +  {tan}^{2}x }\: }}}

and

\underbrace{\boxed{ \tt{cos2x =  \frac{1 -  {tan}^{2} x}{1 +  {tan}^{2}x }\: }}}

So, using this we get

\rm \:  =  \:  \: \:tan \: \dfrac{1}{2}\bigg( {sin}^{ - 1} (sin2p)  +  {cos}^{ - 1}(cos2q)\bigg)

We know,

\underbrace{\boxed{ \tt{ {sin}^{ - 1}(sinx) \: =  \: x }}}

and

\underbrace{\boxed{ \tt{ {cos}^{ - 1}(cosx) \: =  \: x }}}

So, using this we get

\rm \:  =  \:  \: tan\dfrac{1}{2}(2p + 2q)

\rm \:  =  \:  \: tan(p + q)

\rm \:  =  \:  \: \dfrac{tanp + tanq}{1 - tanp \: tanq}

\rm \:  =  \:  \: \dfrac{x + y}{1 - xy}

Hence,

 \boxed{\rm\:tan \: \dfrac{1}{2} \bigg( {sin}^{ - 1} \dfrac{2x}{1 +  {x}^{2} }  +  {cos}^{ - 1}\dfrac{1 -  {y}^{2} }{1 +  {y}^{2} }  \bigg) =  \frac{x + y}{1 - xy}}

Additional Information :-

\boxed{ \sf{ \: {tan}^{ - 1}x +  {tan}^{ - 1}y =  {tan}^{ - 1} \frac{x + y}{1 - xy}}}

\boxed{ \sf{ \: {tan}^{ - 1}x  -   {tan}^{ - 1}y =  {tan}^{ - 1} \frac{x  -  y}{1 + xy}}}

\boxed{ \sf{ \: {sin}^{ - 1}x +  {sin}^{ - 1}y =  {sin}^{ - 1}(x \sqrt{1 -  {y}^{2} } + y \sqrt{1 -  {x}^{2} }}}

\boxed{ \sf{ \: {sin}^{ - 1}x - {sin}^{ - 1}y =  {sin}^{ - 1}(x \sqrt{1 -  {y}^{2} } -  y \sqrt{1 -  {x}^{2} }}}

\boxed{ \sf{ \: {cos}^{ - 1}x - {cos}^{ - 1}y =  {cos}^{ - 1}(xy + \sqrt{1 -  {y}^{2} } \sqrt{1 -  {x}^{2} }}}

\boxed{ \sf{ \: {cos}^{ - 1}x  + {cos}^{ - 1}y =  {cos}^{ - 1}(xy -  \sqrt{1 -  {y}^{2} } \sqrt{1 -  {x}^{2} }}}

Similar questions